
Otto-von-Guericke-Universität Magdeburg

Faculty of Computer Science

D
S E
B

Databases

Software
Engineering

and

Master’s Thesis

Graph Sketches and Embeddings: A
Study of their Applications in

Graph Databases

Author:

Sindhuja Madabushi

March 19th, 2019

Advisors:

M.Sc. Gabriel Campero Durand

Data and Knowledge Engineering Group

Prof. Dr. rer. nat. habil. Gunter Saake

Data and Knowledge Engineering Group

Madabushi, Sindhuja:
Graph Sketches and Embeddings: A Study of their Applications in Graph Databases
Master’s Thesis, Otto-von-Guericke-Universität Magdeburg, 2019.

Contents

List of Figures vii

List of Tables ix

1 Introduction 7
1.1 Research aim . 9
1.2 Research methodology (CRISP-DM) . 10
1.3 Structure of the thesis . 12

2 Background 13
2.1 Organization of the literature review . 13

2.1.1 Network science . 13
2.1.2 Graph databases . 14
2.1.3 Theoretical foundations of graph summarization 14
2.1.4 Sparsification techniques . 15
2.1.5 Graph embeddings . 16

2.2 Literature review . 19
2.2.1 The business advantages brought forward by network science . . . 19
2.2.2 Graph processing . 20

2.2.2.1 Graph database storage 21
2.2.2.2 Graph database querying 22

2.2.3 Graph libraries . 23
2.2.4 Graph algorithms . 24
2.2.5 Summarization techniques for large graph data 25

2.2.5.1 Sparsifiers . 25
2.2.5.2 Embeddings . 30

2.3 Related work in summarization of large graph data in data management 39

3 Prototypical Implementation 43
3.1 Research questions . 43

3.1.1 Sparsifiers . 43
3.1.2 Embeddings . 44

3.2 Implementation . 44
3.2.1 Sparsifiers . 44

iv Contents

3.2.1.1 Hardware and software configurations 44
3.2.1.2 Dataset . 44
3.2.1.3 Libraries . 45

3.2.2 Embeddings . 48
3.2.2.1 Hardware and software configurations 48
3.2.2.2 Dataset . 48
3.2.2.3 GEM python library . 49
3.2.2.4 Neo4j stored procedures 49

4 Sparsifiers 53
4.1 Research Questions . 53
4.2 Evaluation and discussion . 53

4.2.1 Sparsification times (SF1) and description of the summaries . . . 54
4.2.2 Queries over sparsified data (SF1): results 55
4.2.3 Queries over sparsified data (SF1): execution times 58
4.2.4 Sparsification times (SF10) and description of the summaries . . . 60
4.2.5 Queries over sparsified data (SF10): results 61

5 Graph Embeddings 67
5.1 Research questions . 67
5.2 Evaluation and Discussion . 67

5.2.1 Embedding times . 67
5.2.2 Queries over embedded data: execution times 69

6 Conclusion and Future Work 71

7 Appendix 73

Bibliography 95

List of Figures

1.1 Stages of CRISP-DM methodology . 11

2.1 Rise in the number of yearly citations to papers related to network science
in the past two decades according to Albert László Barabási’s book,
Network Science . 20

2.2 Example of property graph model . 21

2.3 Neo4j graph storage on the disk[IR15] . 22

2.4 Visualization of LDBC SNB SF1 data friendships using the Kamada
Kawai layout. Case (a) is formed using the entire graph with 9892 nodes
and 180623 edges. Case (b) uses a sparsified version(local similarity
sparsification) of the same graph with 9892 nodes and 35022 edges, both,
forming “hairballs”. 26

2.5 An illustration about the importance of edge sampling with awareness
of global and local contexts: Keeping intra-cluster edges preserves local
structures, removing inter-cluster edges affects the global structures. . . . 26

2.6 Jazz musicians collaboration network and it’s Local Degree sparsified
version containing 15% of edges[LSH+15]. 28

2.7 Sample weighted undirected graph . 29

2.8 Nodes of the graph being represented as vectors in 2-dimensional space . 31

2.9 Word2Vec Training neural network by feeding it with word pairs from
our training documents . 36

2.10 Neural network architecture . 37

2.11 Word2Vec Output layer: calculating output of the output neuron for the
word “car”. 37

2.12 Node2vec’s second order random walk approach to obtain training data . 37

2.13 Visualizations of Les Misérables coappearance network embedding gener-
ated by Node2vec . 38

vi List of Figures

3.1 LDBC SNB Data Schema . 45

3.2 Triangle sparsification using Networkit 46

3.3 An overview of the Networkit architecture 46

3.4 Generation of METIS files . 47

3.5 Example of METIS Graph file format for unweighted graphs 47

4.1 Average sparsification times (ms) for different types of sparsification . . . 54

4.2 Average betweenness centrality for different types of sparsification 56

4.3 Average page rank for different types of sparsification 57

4.4 Average execution times for different types of sparsification 59

4.5 Average execution times for different types of sparsification 60

4.6 Average sparsification times for different types of sparsification on LDBC
SF10 data . 61

4.7 Average betweenness centralities for different types of sparsification . . . 62

4.8 Average page ranks for different types of sparsification 63

4.9 Average community count for different types of sparsification 63

4.10 Average execution times for different types of sparsification 64

4.11 Average execution times for different types of sparsification 65

5.1 Average execution times for each embedding technique(seconds) 68

7.1 Top 20 most similar nodes (Node2Vec d=10, l=80) 80

7.2 Top 20 most similar nodes (Node2Vec d=128, l=80) 80

7.3 Top 20 most similar nodes (Node2Vec d=4, l=80) 81

7.4 Top 20 most similar nodes (Node2Vec d=4, l=3) 81

7.5 Visualization of SF1 LDBC dataset . 83

7.6 Visualization of random edge sparsified SF1 LDBC dataset 84

7.7 Visualization of SF1 algebraic distance sparsified LDBC dataset 85

7.8 Visualization of SF1 local degree sparsified LDBC dataset 86

7.9 Visualization of SF1 triangle sparsified LDBC dataset 87

7.10 Visualization of SF1 local similarity sparsified LDBC dataset 88

List of Figures vii

7.11 Visualization of SF10 LDBC dataset . 89

7.12 Visualization of SF10 random edge sparsified LDBC dataset 90

7.13 Visualization of SF10 algebraic distance sparsified LDBC dataset 91

7.14 Visualization of SF10 local degree sparsified LDBC dataset 92

7.15 Visualization of SF10 triangle sparsified LDBC dataset 93

7.16 Visualization of SF10 local similarity sparsified LDBC dataset 94

viii List of Figures

List of Tables

1.1 The graph processing challenges selected by the participants from the
survey conducted at University of Waterloo [SMS+17] 10

2.1 Notations used to describe matrices in HOPE 34

3.1 The list of CSV files we used for implementation. 45

3.2 The list of CSV files we used for implementation. 48

4.1 Decrease in average page rank with respect to the baseline for each type
of sparsification . 57

4.2 Average community count for different sparsification techniques 58

4.3 Number of nodes and edges after sparsification of SF10 data 60

4.4 Average betweenness centrality, average page rank and average community
count for both SF1 and SF10 data. The numbers in the table represent the
number of times by which there is increase(↑) or decrease(↓) in each feature
w.r.t respective baselines. SR, BC, CC, PR represents sparsification ratio,
betweenness centrality, community count, and page rank respectively. . . 66

5.1 Execution times to calculate pairwise cosine similarities of node2vec
embedded data in python (average of 10 repetitions each) 69

x List of Tables

Abstract

Large-scale graph processing has evolved to be an important research area, thanks to
the proliferation of on-line social networks and growing uses of linked data. Graph-based
models are used in many applications, including search engines and recommendation
engines, within and outside social networks. An important practical consideration
while processing large volumes of data is creating summaries of the data, since it is
usually impractical to perform operations on the entire dataset. These summarization
procedures attempt to preserve important data features with a significantly reduced
memory footprint.

To be purposeful, the data structures used for summarization should be easy to build
while also producing good approximations of relevant properties of the data. Although
there is existing work that evaluates different graph summarization techniques over some
generic graph properties (such as community counts and similarity measures), there is
no clear understanding of how these solutions behave when integrated with off-the-shelf
graph databases.

In this thesis, we consider two summarization techniques, namely sparsifiers and graph
embeddings, examining their effects on data generated using the LDBC social network
benchmark, which is loaded onto the Neo4j graph database. We present detailed
empirical results that investigate the efficacy of several sparsification and embedding
techniques in preserving graph properties of interest, viz., community detection, node
centrality, page rank, and cosine similarity.

Our results can be considered as a first step towards guiding the choice of the sparsifica-
tion/embedding technique to be used in practical scenarios with graph databases, while
obtaining informative and fast query results.

2 List of Tables

Acknowledgements

By submitting this thesis, my long term association with Otto von Guericke University
will come to an end.

First and foremost, I am grateful to my advisor M.Sc. Gabriel Campero Durand for his
guidance, patience and constant encouragement without which this may not have been
possible. I take this as an opportunity to express my deep gratitude especially for all
the long discussions, running the entire experiments for embeddings on another machine
in my absence from Magdeburg, and providing me with the graph visualizations that
helped me to understand the different results of the sparsification techniques. Thank
you for the constant support and encouragement.

I would like to thank Prof. Dr. rer. nat. habil. Gunter Saake for giving me the
opportunity to write my Master’s thesis at his chair.

I would like to thank my friends(family) at Magdeburg who supported me and helped
me grow personally and professionally, throughout my masters studies at OvGU.

Most part of research and writing for this thesis has been done during my weekly
commutes from Magdeburg to Berlin. I would like to thank the Deutsche bahn authorities
for making it a comfortable and memorable experience!

Finally, I would like to thank my mother and brother for constant encouragement to
achieve my career goals and helping me be the best version of myself in all facets of life.

4 List of Tables

Declaration of Academic Integrity

I hereby declare that this thesis is solely my own work and I have cited all external
sources used. Magdeburg, March 19th, 2019

———————–
Sindhuja Madabushi

6 List of Tables

1. Introduction

It’s a small world

“Networks are everywhere” is perhaps a statement that has become seemingly usual,
thanks to the rise in the number of real world applications, which use network paradigms
to model complex systems. The ubiquity of networks has become so apparent, given
the fact that they can be relevantly studied, by modeling real world networks as graphs.
This approach is highly applicable. For example, protein structures within each of our
cells can be modeled as graphs by casting nodes to proteins and links to interactions
between them. It is extremely important that these networks work right for our very
existence and the study of these structures could help us cure a lot of diseases. On the
other hand, the universe can be modeled as a network too, showing how galaxies are
connected to each other by gravitational forces and other influences, a concept called as
“cosmic wrap” which astrophysicists are increasingly talking about.1

But the study of networks is not just about how they facilitate modeling. With network
analysis it is possible to gain insights into real world phenomena. Studies have shown
that real world networks are not random[B+16]. They are often connected following a
small world pattern, in which any node can reach any other node in a relatively small
number of steps (when compared to the size of the graph). Hence, detecting this type
of networks (i.e., with small world patterns) form a backbone for understanding the
dynamics of a real world system; capturing, the spread of fashions, cultures, languages
and perhaps even wars.2

In the 21st century, for all one knows, the most evident example of networks are
online social networks. Popular social networks like Facebook, Twitter, LinkedIn, and
Instagram are being used by people across the globe to connect with each other. Since
these connections are made by a number of people across the globe, the real time

1https://www.youtube.com/watch?v=c867FlzxZ9Y
2https://www.technologyreview.com/s/534576/how-network-science-is-changing-our-

understanding-of-law/

8 1. Introduction

social network data is very large, consisting of millions of nodes and edges, where nodes
represents people and edges represent relationships between them. Analyzing this data
means analyzing relationships between people, detecting communities, detecting the
spread of opinions, facts, and rumors for the good. As this technology advances, efficient
tools and techniques are required to store, process and analyze this data, especially
since the data is being generated rapidly every second. Some of the technologies used
include graph databases, a specialized kind of data management system that helps users
to store and query data with a network paradigm.// Apart from specialized storage and
query solutions, the magnitude of the generated data calls for so called summarization
techniques. When dealing with massive data sets, it is much impractical to perform
operations on the entire dataset as a whole. So, the main idea is to capture some relevant
properties of data in a structure with a reduced memory footprint (when compared to
the original data), which contains important information about the data, information
that can be derived from just the synopsis at any time. Since this process helps in
identification of structure and meaning in data, the data mining community has taken a
strong interest in this area of research.
The concept of graph summarization cannot be easily defined[LSDK18]. This is because,
summaries are application-dependent and are formed depending on what properties of a
graph the user wants to retain within the summary. For example, there are structure
preserving summaries and node preserving summaries, summaries that preserve spectral
properties[BSST13], and summaries that preserve statistical properties. Therefore, this
problem is being studied algorithmically in the fields of graph mining, theoretic computer
science, and data management. According to a recent survey by Y Liu et al.[LSDK18],
graph summarization has the following benefits and challenges:

Benefits

• Reduction of data volume and storage. As mentioned earlier, the real-world graph
data is very large. Summaries preserve relevant properties with relatively lower
memory footprint compared to the original data.

• Speedup of graph algorithms and queries. Summaries provide notable information
from the original graph. The summary graph can be more efficiently queried,
analyzed and understood with already existing algorithms and tools.

• Interactive analysis support. As the size of graph data increases, visualization of
this data also becomes a challenge. The resultant graph summaries make it easier
to visualize these datasets, avoiding the “hairball” visualization problem.

• Noise elimination. Large graph datasets also tend to contain unnecessary links
between nodes making the data noisy. Graph summaries retain only the important
information avoiding all the noise in the data.

Challenges

• Complexity of data. As the graph data is interconnected, partitioning the data and
parallelization of operations on data is not as straight-forward as for other cases.

1.1. Research aim 9

Also, the data could be heterogeneous with information from different sources
(text, image) which might require special data structures. These aspects make the
building of summaries challenging.

• Data volume. The most successful social networking site, Facebook had about
two billion monthly users as of June 20173. The goal of summarization techniques
is to reduce the size of the graphs to consider. However, the summarization
techniques themselves, face the challenge of processing large data. The design of
these techniques are often steered by how well they can scale up with the input
graph.

• Definition of interestingness. The definition of interestingness is subjective, re-
quiring both domain knowledge and user preferences. The cutoff between interest-
ingness and uninterestingness is determined by considering the tradeoffs between
time, space and the information preserved in the summaries.

• Evaluation. The evaluation of summaries often varies according to perspectives.
From a database perspective, a summary can be said to be good if it supports
local or global queries with high efficiency. In terms of compressed sensing, a good
summary minimizes the number of bits needed to describe the input graph. From
a theoretic computer science perspective the evaluation focus would be on how
accurately can dense graphs be reduced to sparse graphs with smaller time and
space complexities.

1.1 Research aim
By now, it is quite evident that network analysis and graph technologies are becoming
increasingly prevalent, and have established their usefulness across various domains.
Recently, a team from University of Waterloo conducted an extensive survey[SMS+17]
aimed at understanding the types of graphs users have, computations they run on their
graphs, software they use, and challenges they face while processing their data.

Their survey was conducted with participants from both industry and academia across
the globe. Table 1.1 shows the detailed list of challenges faced by participants. R
indicates researchers and P indicates practitioners. Since real world graphs are often
large, and consist of diverse range of entities, scalability and visualization are the most
pressing challenges reported by participants.

In this thesis, we consider a summarization techniques, which are a solution that could
simultaneously help with scalability and visualization. In addition we aim to purposefully
evaluate such techniques with an off-the-shelf graph database, to help data management
teams to understand better the gains that can be expected from these techniques in real
world software stacks.

3https://www.telegraph.co.uk/technology/2017/06/27/facebook-now-has-2-billion-users-mark-
zuckerberg-announces/

10 1. Introduction

Challenge Total R P
Scalability (i.e., software that can process larger graphs) 45 20 25
Visualization 39 17 22
Query Languages / Programming APIs 39 18 21
Faster graph or machine learning algorithms 35 19 16
Usability (i.e., easier to deploy, configure, and use) 25 10 15
Benchmarks 22 12 10
Extract & Transform 20 6 14
More general purpose graph software (e.g., that can process
offline, online, and streaming computations)

20 9 11

Graph Cleaning 17 7 10
Debugging & Testing 10 2 8

Table 1.1: The graph processing challenges selected by the participants from the survey
conducted at University of Waterloo [SMS+17]

With this aim we propose to study two types of structure-preserving summarization
techniques, namely, graph sparsification and graph embeddings on static graphs of
different scale factors. We study the summarization process (incl. alternative approaches
for each selected technique), and the performance of queries over the summarized data:

• We compare then the runtime of cypher queries for betweenness centrality, com-
munity detection, page rank, partition size and strongly connected components on
both sparsified and unsparsified original data.

• We run a query for pairwise cosine similarity of nodes on both embedded and
unembedded data.

Overall we propose a novel performance study of chosen summarization techniques on
a graph database, thereby aiming to help practitioners understand better solutions to
deal with the problem of scalability and visualization.

1.2 Research methodology (CRISP-DM)
CRISP-DM stands for cross industry process for data mining. It is a process model that
is being used for data mining projects since the late 1990s. This methodology consists
of a series of project steps which allow and might require the user to navigate back
and forth. Figure 1.14 shows the different phases and the relationships between them,
of a typical data mining project. As mentioned earlier, the order of occurrence of the
phases in this methodology is not rigid. However, overall, the results of the current
phase are expected to determine the occurrence the next phase or particular task of the
next phase. Henceforth, we discuss different phases of CRISP-DM approach.

4https://www.kdnuggets.com/2017/01/four-problems-crisp-dm-fix.html

1.2. Research methodology (CRISP-DM) 11

Figure 1.1: Stages of CRISP-DM methodology

Business understanding

This is the initial phase that focuses on understanding of project goals from a business
perspective. The knowledge is then converted into a data mining problem definition, and
an initial plan to achieve the goals. In our study the results of this phase are collected
in our background chapter.

Data understanding

The data understanding phase starts with collection of data and then, carries forward
with activities that aid the user to get familiarized with the data and its quality. This
phase involves Collecting initial data, describing the data, exploring the data, and
verifying the data quality. In our phase this corresponded to understanding an cleaning
the datasets selected for our evaluation. The results are partially described in our
experimental setup chapter.

Data preparation

In this phase we already have the dataset(s) produced by the previous phase. At this
stage, the data should be preprocessed and cleaned. This preprocessed data will be used
further for modeling and analysis. Since, we already have the clean data, it is always
advisable to have dataset description handy. This phase typically involves selecting data,
cleaning data, constructing data, integrating data, and formating data. This phase was
carried out for our evaluations, but the results are not described in this thesis.

Modeling

In this phase several modeling techniques are used on the previously processed data.
There are several techniques which can be used for a particular data mining problem.

12 1. Introduction

Also, these modeling techniques require tuning of parameters to optimal values and hence,
going back to data processing phase might be necessary. The following tasks should be
done in this phase: selecting modeling technique, generating test design, building model,
and assessing model. This phase comprised the setup of the summarization techniques
we selected.

Evaluation

In a data analysis perspective, the model is already largely evaluated. But before
deployment, it is important to thoroughly review the steps executed to build it, to be
certain that the model achieves the business objectives. A key objective is to determine
if there is a key business question that has not been sufficiently addressed. At the
end of this phase, a decision on how the data mining results are to be used should be
reached. The following are the tasks in this phase: evaluating results, reviewing process,
and determining next steps. Previous evaluation steps dealt with factors such as the
accuracy and generality of the model. The results for this stage are disclosed in our
evaluation chapters.

Deployment

It is known that the purpose of the model is to enhance knowledge of the data. This
knowledge needs to be organized and presented in such a way that the customer can
exercise it, applying live models within an organization’s decision making, for instance.
Depending on the initial requirements, the deployment phase can constitute of something
as simple and basic as generating a summary report or as complex as building a repeatable
data mining process across the enterprise. In most cases, the customer carries out the
deployment steps. In rare cases if the analyst carries out the deployment steps, it is
necessary for the customer to understand what actions should be carried out in order to
use the created models. This phase is not considered in this thesis.

1.3 Structure of the thesis
This thesis is organized as follows: In chapter 2, we discuss the required background
to undestand our work. We overview concepts form data management for networks,
graph databases; and we report a detailed literature review of graph summarization
and relevant aspects from representational learning. In chapter 3, we proceed to discuss
the prototypical implementation for both our methods. In chapter 4, we talk about the
our results, evaluation and discussion for graph sparsification techniques. In chapter 5,
we discuss our observations for chosen graph embedding techniques. In chapter 6, we
discuss conclusion and future work.

2. Background

In this chapter we present an overview of the theoretical background required for
our research. Since our work is based on examining the contributions and effects of
sparsification and embedding techniques on graph data evaluated using graph databases,
we do not provide a comprehensive review of data management in graph databases
or explanation of graph algorithms, though we cover the basics of these topics. In
our discussion we focus on examining various sparsification and embedding techniques
available and their effects on a chosen test database only. In order to understand the
context of our research, we present in detail the main techniques we used in our work,
our research aim, and methodology in subsequent sections.

This chapter is organized as follows:

• In Section 2.1, we discuss the organization of literature review. We briefly talk
about how we started our research and what papers/books we referred to carry out
our research on various topics like network science, graph databases, sparsification
techniques, graph embeddings.

• In Section 2.2, we give the required background for our research. This includes a
detailed explanation of graph database storage and querying, graph algorithms,
and chosen sparsification and embedding techniques.

• In Section 2.3, we discuss the related work.

2.1 Organization of the literature review
In this section we discuss the overview of the literature we used to get a basic under-
standing of network science, graph summarization techniques, different types of graph
sparsification and embedding methods.

2.1.1 Network science
The study of complex networks is an important research field especially during the
last two decades due to rapidly increasing number of applications that use network

14 2. Background

paradigms to model their systems. To understand its relevance better and more in detail,
we used the following literature:

• Barabási, Albert-László. Network science. Cambridge university press, 2016 [B+16].
This text book gave us a clear understanding of basic graph theory, graph data
analysis methods, overview of some graph features, some computational and
modeling methods and their applications along with some insightful illustrative
examples which allowed us to describe graph-based thinking.

2.1.2 Graph databases
Graph databases follow a graph data model, making graph entities (i.e., edges, nodes,
traversals) core abstractions in database management systems. Since our work also
involves evaluation of queries on summarized data in a chosen graph database, we made
attempts to understand the underlying storage and query processing systems in graph
databases. We also tried to get a deeper understanding of graph data models and query
languages. For this, we used the following sources:

• Graph databases (I Robinson, J Webber, E Eifrem)[RWE13]. This book has details
about how graph databases are designed and implemented, an explanation of data
models, their applications and query languages.

• Survey of graph database models (R Angles, C Gutierrez)[AG08], an extensive
survey of graph database models starting from evolution of the different data
models from different theoretic aspects.

• Foundations of modern query languages for graph databases(R Angles et al).[AAB+17]
A survey of foundational features of modern graph query languages along with
examples of some query languages, their types and semantics.

• The ubiquity of large graphs and surprising challenges of graph processing (S Sahu
et al.)[SMS+17] An extensive survey with applications and challenges of large
scale graph processing addressing known and unknown issues like scalability and
visualization with several participants from across the globe both from industry
and academia.

2.1.3 Theoretical foundations of graph summarization
Graph summarization is the process of reducing large graph data into a smaller graph,
preserving required properties in such a way that one can draw interesting insights about
these graph properties from the summary itself, rather than processing the whole data.
To understand the theoretical foundations of graph summarization, we searched by the
keywords, “graph stream algorithms”, “graph sketches” in Google scholar and got 447000
and 134000 results, respectively. We found that the following papers were relevant for
our research:

• Graph sketches: sparsification, spanners, and subgraphs(KJ Ahn et al.)[AGM12b]
aims at building a sketch-based sparsifier to preserve properties of a graph like
min cuts, distances between nodes and prevalence of dense sub-graphs.

2.1. Organization of the literature review 15

• Graph sketches (J Abello et al.)[AFK01] brings to attention, some algorithmic and
visualization aids behind the estimation of Graph Sketches.

• Analyzing graph structure via linear measurements (KJ Ahn et al.)[AGM12a]
focuses on building graph sketches into much smaller dimensional spaces with the
help of random projections preserving properties like connectivity, k-connectivity,
bipartiteness.

• Database-friendly random projections- Johnson-Lindenstrauss with binary coins
(D Achlioptas)[Ach03] develops a graph embedding using matrix factorization.

• Densest Subgraph in Dynamic Graph Streams (McGregor et al.)[MTVV15] focuses
on solving a specific problem in a dynamic graph stream model of computation
given only limited working memory.

• Efficient Online Summarization of Large-Scale Dynamic Networks (Q Qu et
al.)[QLZJ16] a framework for on-line summarization of dynamic networks that
aims to produce brief, interestingness-driven synopsis that captures the unfolding
of information diffusion processes.

• Graph Sketching and Streaming - New Approaches for Analyzing Massive Graphs
(A McGregor)[McG17] discusses some novel approaches for construction of sketches
for massive dynamic graphs.

• Labeled Graph Sketches (C Song, T Ge)[SG18] proposes a labeled graph sketch
that stores real-time structural information of graph in sub-linear space and
supports various types of queries.

• Sketch Techniques for Approximate Query Processing (G Cormode)[Cor11] talks
about various types of sketch techniques such as frequency based sketches and
sketches for distinct value queries for approximate query processing.

The following are the survey papers we used:

• Graph stream algorithms: a survey (A McGregor)[McG14] highlights some simple
algorithms that illustrate basic ideas of data structures for dynamic graphs,
distributed and parallel computation, and approximation algorithms.

• Graph Summarization Methods and Applications A Survey (Y Liu et al.) [LSDK18]
provides an extensive survey and a taxonomy of graph summarization algorithms
based on the input type and the underlying employed techniques.

2.1.4 Sparsification techniques
From a theorectical computer science perspective, the goal of sparsification is to reduce
dense graphs into sparse graphs or subgraphs such that their structural and statistical
properties are preserved while reducing storage space requirements and some complexity.
We used the key words “graph sparsification”, “sparsification on social networks” to
search on google scholar and found the following papers to be relevant for our research:

16 2. Background

• Single pass spectral sparsification in dynamic streams (M Kapralov et al.)[KLM+17]
talks about a technique that reduces dense graphs to sparse graphs/subgraphs
with low time and space complexity.

• Single-and multi-level network sparsification by algebraic distance (E John, I
Safro)[JS16] proposes sparsification in two levels based on an algebraic distance
metric.

• Spanners and sparsifiers in dynamic streams (M Kapralov, D Woodruff)[KW14]
addresses the problem of constructing spanners and sparsifiers of a given graph
preserving spectral information.

• Structure-preserving sparsification of social networks (G Lindner et al.)[LSH+15]
provides various novel sparsification techniques specifically designed for social
networks.

• Networkit: An interactive tool suite for high-performance network analysis (C
Staudt et al.)[SSM14] has information about the implementation of a python
library, networkit, which is built specifically for sparsification of social networks.

In the computer science literature, there are numerous sparsification techniques. We
went through each sparsification technique used in [LSH+15], in detail to evaluate our
results. For this, we gave a thorough reading of the theory and techniques based on
which these sparsification methods were designed.

• Algebraic distance on graphs (J Chen, I Safro)[CS11] introduces a technique for
application of a metric called algebraic distance on graphs.

• Local graph sparsification for scalable clustering (V Satuluri et al.) [SPR11]
introduces similarity metrics on graphs using Jaccard similarity over adjacency
matrices

• Arboricity and subgraph listing algorithms(N Chiba, T Nishizeki)[CN85] introduces
a strategy for edge-searching and using this strategy, obtains algorithms for listing
triangles, quadrangles, complete subgraphs and cliques.

• Triangle listing algorithms: Back from the diversion[OB14] suggests a unifying
framework that says that different triangle listing algorithms are instantiations of
generic procedure and also provides additional variants.

2.1.5 Graph embeddings
Graph embeddings refer to representing nodes of the graph as vectors in a n-dimensional
vector space. The main aim of these methods is to make the nodes of a graph accessible
to machine learning methods, capturing structural and content features of the nodes,
while also reducing memory foot print (since some analysis can work on the embedded
data rather than on the actual node data). Therefore, in a way, these methods also
serve as summarization methods.

2.1. Organization of the literature review 17

Further, work exists where graph embeddings are purposefully created to preserve some
graph properties like communities structures[WCW+17].

To learn more about graph embeddings, we started our research by referring to various
survey papers to learn about graph embedding methods already proposed in the literature.
We made key word searches on Google scholar using the keywords, “structure preserving
graph embeddings”, “graph embeddings”, and “network embedding” for which we got
about 17,700, 19,400, and 117,000 results respectively. Later we examined various
structure-preserving network embedding methods in detail, and used the following
papers to learn about them.

• Representation Learning on Graphs: Methods and Applications (Hamilton et.
al)[HYL17] reviews both individual nodes and subgraph representations on graphs
using various algorithms based on matrix factorization, graph neural networks and
random-walk based approaches.

• struc2vec: Learning node representations from structural identity (LFR Ribeiro et.
al)[RSF17] introduces a novel, flexible approach to learn latent representations of
graph to preserve structural identity.

• Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
(Mikhail Belkin, Partha Niyogi)[BN03] proposes a computationally efficient ap-
proach for non-linear dimensionality reduction that preserves the locality and
could be further used for clustering, by drawing a near analogy between graph
Laplacian and the Laplace Beltrami operator.

• Nonlinear Dimensionality Reduction by Locally Linear Embedding (Sam T. Roweis,
Lawrence K. Sau)[RS00] proposes an embedding technique to embed high-dimensional
inputs that preserve both local and global structures.

• Asymmetric Transitivity Preserving Graph Embedding(Ou et. al)[OCP+16] intro-
duces a graph embedding technique that preserves higher order proximities.

• LINE: Large-scale Information Network Embedding (Tang et. al)[TQW+15]
proposes a scalable network embedding technique using an edge-sampling algorithm
that optimizes a carefully designed objective function to preserve both global and
local structures.

• DeepWalk: Online Learning of Social Representations (Perozzi et. al)[PARS14]
introduces a parallelizable, scalable, incremental approach for latent node repre-
sentational learning using random walk and deep learning approaches.

• Community Preserving Network Embedding (Wang et. al)[WCW+17] proposes a
modularized non negative matrix factorization algorithms for preserving community
structures in network embedding.

• node2vec: Scalable Feature Learning for Networks(Aditya Grover, Jure Leskovec)[GL16]
proposes a method for rich node representational learning based on a biased random
walk algorithm to efficiently explore diverse neighborhoods.

18 2. Background

• Structural Deep Network Embedding (Wang et. al)[WCZ16]introduces a method
to preserve both first order and second order proximities in embeddings. The
framework consists of two components for supervised and unsupervised learning.
The second order proximities are preserved using auto encoders and first order
proximities are further preserved by adapting laplacian eigenmaps.

The following are the survey papers we used for our research on graph embeddings:

• Graph embedding techniques, applications, and performance: A survey (P Goyal,
E Ferrara) [GF18] provides a comprehensive survey of different graph embedding
techniques proposed previously in the literature by dividing the techniques into
three categories namely random-walk based, factorization based, and deep learning
based. Also introduces a open source library called GEM which provides an
implementation of all presented algorithms.

• Comprehensive Survey of Graph Embedding: Problems, Techniques, and Appli-
cations (Cai et. al) [CZC18] provides a taxonomy of graph embedding methods
along with their benefits and challenges, and how they are overcome by existing
methods.

• A Survey on Network Embedding (Cui et. al) [CWPZ18] discusses existing graph
embedding algorithms and their relationship with network embeddings. Also,
covers a wide variety of network embedding methods including embedding methods
with side information and the advanced information preserving embedding methods.

2.2. Literature review 19

2.2 Literature review

2.2.1 The business advantages brought forward by network
science

Networks are ubiquitous and have applications to numerous activities in our daily lives
ranging from television satellite networks to social networks to brain activity networks.
It is extremely hard to group the applications of networks into a set of methodological
categories. In fact, in an Australian television documentary in 2008, Duncan J Watts
described the nature of network applications in the following way:

“Networks are important because if we don’t understand networks, we can’t
understand how markets function, organizations solve problems, or how
societies change.”

This statement does not only talk about the potential relevance of networks in wide
range of domains, but also about how important and necessary they are to solve certain
problems. Thanks to the proliferation of application of network paradigms to model
complex systems, networks science has evolved to be a major research area especially
during the last two decades. The book Network Science by Albert László Barabási[B+16]
categorizes the business impact brought forward by network science into two major
categories: Societal and Scientific.

Economic impact: from web search to social networking:

The most successful companies of the 21st century, Google, Twitter, Linkedin, Cisco
and Apple have their business model based on networks. It is not only social networking
companies like Facebook, Twitter and Linked which envisioned to map the whole world
to a social network, but the search technology built by Google is deeply interlinked with
the network characteristics of the Web. Algorithms conceived and built by network
scientists foster these sites by aiding them with applications that consider network
features to provide functionality from friend recommendation to advertising.

Health: from drug design to metabolic engineering

Increasing awareness on molecular fragment mining [BBP05] in molecular networks
has led to the emergence of research fields like network biology [BO04] and network
medicine[BGL11]. Another application of networks in Drug design, network pharmacol-
ogy [Hop07] is worthy of a special mention as it aims to develop drugs for major diseases
without any side effects, by using network analysis. Several companies like GeneGo
and Genomatica leverage the predictive power of metabolic networks to identify drug
patterns in bacteria and humans. Major companies like Johnson & Johnson have also
made significant investments in network medicine seeing its potential.

Epidemics: from forecasting to halting deadly viruses

This area of research focuses on exploiting the potential of transport networks to combat
the spreading, and forecasting the flow of epidemics. The emergence of a network-
based framework offers a new level of predictability and accountability to this domain.

20 2. Background

Today, epidemic prediction is used to foresee the spread of viruses like Ebola. Besides,
network paradigms have also been used to predict the spread of other kind of viruses,
cyber-viruses, in mobile phones[WGHB09].

Neuroscience: mapping the brain

Analysis of brain networks has a wide variety of applications in the field of Neuroscience.
Finding out the batches of neurons which are linked together yields information on the
presence of diseases like Alzheimer. The Connectome project initiated in 2010 by the
National Institutes of Health in the United States could provide accurate neuron-level
maps of mammalian brains.

Scientific impact:

In the past two decades, network science has emerged to be a major research area,
particularly due to the rise of applications following network paradigms for the World
Wide Web. Thereafter, many international workshops, conferences, summer and winter
schools have started to focus on network science[B+16]. Figure 2.1 shows the rise in the
number of citations to works which focus on complex networks in the past two decades.

Figure 2.1: Rise in the number of yearly citations to papers related to network science
in the past two decades according to Albert László Barabási’s book, Network Science
[B+16]

2.2.2 Graph processing
In this thesis, we investigate the effects of summarization techniques on a specific graph
database and hence, we proceed to introduce some basic concepts about graph databases,
encompassing their storage and querying. To this end, we explain details on the specific
Neo4j database.

2.2. Literature review 21

2.2.2.1 Graph database storage

In order to introduce graph databases, it is necessary to begin with the data model
adopted. The most common model in graph databases is the property graph model. In
this model, nodes are connected to each other via named relationships. Both nodes and
relationships may have properties. Figure 2.2 shows an example of a property graph
model.1

Figure 2.2: Example of property graph model

A graph database engine is said to possess native processing capabilities, if it exhibits a
property known as index-free adjacency [IR15]. Index-free adjacency requires for every
node in the graph to have a direct reference to its neighboring nodes without the explicit
use of indexes. In this way, nodes on the graph act as micro indexes for their neighboring
nodes[IR15].
On the other hand, a graph database engine is said to have non-native storage if the
indexing is external, that is, it follows another storage approach (e.g. relational or
columnar storage).

Native storage capabilities offer the following advantages over non native storage capa-
bilities:

• storage processing. Since, index-free adjacency needs every node to maintain a
direct reference to all its neighboring nodes, storage processing speed is higher.

• Query processing. For the same reason, fast retrievals are also guaranteed without
the requirement for indexes.

Evidently, native storage approach is the more suitable for graph data and also has an
advantage of low-cost “joins” as joins are pre-computed and stored in the database as
relationships[IR15].
In order to describe better one possible mapping between the conceptual native storage

model, and the actual physical storage, we describe how a representative commercial
graph database (Neo4j) stores its data on disk.

1Source: https://neo4j.com/developer/graph-database/

22 2. Background

Figure 2.3: Neo4j graph storage on the disk[IR15]

Neo4j stores its graph data in store files. Nodes, relationships and properties are stored
in three different store files. This separation of storage responsibilities steers fast and
high performance traversals, especially due to the division of storage between graph
structure and its properties. The node store contains records of fixed size as shown
in Figure 2.3. Just like node files, relationship files also have records of fixed length,
enabling fast look ups.
The first byte in the node store is a flag that tells the database if the record is being
used to store a node or if it is free for a new node. The next four bytes are used for
representing ID of the first relationship connected to the node, and the subsequent four
bytes are used to represent the ID of the first property of the node. The next five bytes
used for labels actually point to the label store of the respective node. The last byte is
reserved for flags one of which might be used to identify densely connected components.
Relationship files contain a set of records that describe the relationships in the graph.
Each relationship record contains IDs of source and target nodes, the pointer to the
relationship type stored in relationship type store, and pointers corresponding to next
and previous relationships. Finally, the firstInChainMarker tells if the relationship
record is the first in the relationship chain.

Through this configuration the Neo4j database is able to match the storage to the basic
expected queries in a graph systems. Next, we talk about graph database querying.

2.2.2.2 Graph database querying

Efficient support for querying is the most visible feature of database systems. The types
of queries posed to databases implicitly illustrate how complex the supported applications
are. Graph database querying is different from traditional database querying in the
way that it does not have to deal with explicit joins present in traditional relational
databases, as mentioned in the previous section. Schema-less features and complex
path-pattern matching can also be expressed in graph query languages.

In terms of the types of queries [KWY12] distinguishes simple queries from complex
queries in the following way: Shortest path finding, reachability, pagerank, and graph
clustering are some simple queries to graph data. By ’simple’, it should be noted that

2.2. Literature review 23

these queries only require information about structure of the graph. However, they may
not be able to capture the rich semantics in complex networks. Graph pattern mining,
similarity search, anomaly detection, graph skyline and OLAP, graph aggregation, and
keyword search are typical examples of queries that require to consider both the structure
and the semantics of the underlying data modeled as a graph.
According to [KWY12], emerging graph queries can be categorized into (1) Mining
queries, (2) Matching queries, and (3) Selection queries.

• Mining queries. Proximity, frequency, and flexibility are the most important char-
acteristics of proximity patterns that are to be mined by these queries. [KYW10]
proposes a method to measure proximities among labels and uses a modified
FP-tree algorithm to mine the top-k proximity patterns.

• Matching queries. The problem addressed by these queries is typically the subgraph
isomorphism[CYD+08, BKS02, TFGER07, Gal06] problem, consisting of finding
subgraphs that match the shape of a query subgraph. This problem is NP-complete.

• Selection queries. These queries involve identifying top-k nodes close to a specified
keyword or a keyword set[BHN+02, LLZW11, BKS02].

Apart from the types of queries, graph query languages can broadly be categorized into
two types: pattern matching based query languages and traversal based query languages.

• Pattern matching based query languages. These query languages fundamentally
facilitate the use of pattern matching queries in graph databases. Basic graph
patterns can be combined with some major relational-like features such as unions,
projection and difference to filter out the results and allow only the results which
satisfy conditions for the match in the query[AAB+17]. This type of query
languages have applications in areas like chemical structure analysis and pattern
recognition. Cypher and SPARQL are two among many popularly used graph
pattern query languages. Cypher is a declarative language made for querying
property graphs and SPARQL is used for RDF triple stores.

• Traversal based query languages. These kind of languages fundamentally support
path queries, that is, queries which require navigation through topology of the graph.
These query languages support queries related to traversal and transitivity closures
in directed graphs. All the relevant paths can be returned or resultant paths can
be filtered out by imposing restrictions on edge labels. The transitive friend-of-
a-friend relation in social networks is one such example where we are interested
in paths with edges labeled ’knows’ (and not likes or any other label)[AAB+17].
An example of a traversal-based query language is Gremlin, which is used in
JanusGraph, a distributed graph database.

2.2.3 Graph libraries
Not only graph databases can be used for processing graphs, also large scale systems
and graph libraries exist. In this section we describe about graph libraries.

24 2. Background

Graph libraries are specially built for creation, manipulation, statistical analysis, and
study of structure of complex networks. With these libraries in we can load and store
networks in different data formats (Eg. JSON). Often, core algorithms associated with
these libraries are written in programming languages like C, C++ or FORTRAN and
these libraries provide an interface to those existing algorithms; whereas the libraries
themselves can also offer interfaces in other languages like Python or Java.
Most libraries, support directed, undirected, weighted and non-weighted, hypergraphs,
CSV import and export feature, and implementation of basic graph algorithms such as
breadth-first search, depth-first search, Heuristic search (A algorithm), Prim’s algorithm
for minimum spanning tree, Dijkstra’s algorithm for shortest path search, and strongly
connected components. Libraries like Networkx also allow features such as numerical
linear algebra and drawing. Libraries such as Pygraphviz and bokeh are used for
visualization of complex networks. SNAP is a general purpose library, written in
C++, specifically used for graph mining and is supported by both C++ and Python
programming languages.

2.2.4 Graph algorithms
We list in this section some algorithms available for graph querying. In specific, we limit
our discussion of algorithms to the official user guide for Neo4j2. This guide categorizes
graph algorithms into the following categories:

• Community detection algorithms. Community detection algorithms are a set of
algorithms aimed at identifying communities in a network or a graph. Neo4j facili-
tates queries in-built for two community detection algorithms, Louvain algorithm
and label propagation algorithm. Louvain uses a modularity-based approach to
identify communities. Label propagation, on the other hand, uses labels.

• Centrality algorithms. Centrality algorithms focus on finding the most important,
or in other words, most influential nodes of a graph. Neo4j offers in-built queries
for betweenness centrality, closeness centrality, page rank, and edge centrality. We
use betweenness centrality and page rank for our evaluation from this category of
graph algorithms.

• Connected components algorithms. This class of graph algorithms aims at finding
the subgraphs in which each pair of edges are connected by a path and no vertex
subgraph is connected to any vertex in the supergraph. Neo4j offers queries for
connected components and strongly connected components.

• Path finding algorithms. A class of algorithms which focus on finding the shortest
path. Neo4j has queires for minimum weight spanning tree algorithm, shortest
path algorithm, single source shortest path algorithm, all pairs shortest path
algorithm, A* algorithm, Yen’s K-shortest paths algorithm, and random walk
algorithm in-built for this purpose.

2https://neo4j.com/docs/graph-algorithms/current/

2.2. Literature review 25

In previous sections we have described essentials of graph data systems. In this section
we provided a brief listing of graph algorithms, which aims to illustrate the kind of
processing that summarization is called upon to improve. In the next section we describe
some summarization techniques, with a focus on the techniques that we study in our
work.

2.2.5 Summarization techniques for large graph data
There are several approaches to summarizing graph data. These include spanners, spar-
sifiers and embeddings, among others[LSDK18]. In our work we focus on sparsification
and embeddings, which we discuss next.

2.2.5.1 Sparsifiers

Sparsification is a graph summarization technique that aims at lessening the number
of edges in a graph using edge sampling techniques, so that the size of the network
is reduced while preserving general structural and statistical properties. The edges
are sampled depending on the application requirements and connectivity properties.
Although there are graph summarization techniques that predominantly preserve specific
properties like the diameter[RJH], for instance, in this thesis, we focus on studying and
evaluating edge sparsification techniques that preserve the more general structure of the
graph.

As mentioned in Section 2.1, the sparsification techniques we use for our study deal
with both sparse and dense graphs, and is weakly connected to the theoretic computer
science approach in which sparsification refers to reducing dense graphs to sparse graphs
with reduced time and space complexity while preserving specific properties like spectral
properties[BSST13], for instance.

In addition, real world social networks are already sparse as it is less likely that all the
members on a social network are connected to all the other members. However, there
would be some typically dense areas which possess large number of nodes and edges
which makes it more expensive computationally.

The most important application of these sparsification techniques is information visual-
ization. Information visualization in graphs is a quite challenging task. This because
of the fact that, even very small real world networks are only seen as “hairballs” when
visualized using standard techniques. Although there are numerous techniques for
sparsification defined in different contexts, we evaluate the sparsification techniques
provided by a Python library called networkit3[SSM14, LSH+15], due to its ease of use
and the fact that it is open source.

Generic framework for sparsification

The core idea of edge sparsification is that, not all edges of a graph are equally important
with regards to different properties of a network. This idea is made explicit in some
work, as in the case of the work of Lindner et al. [LSH+15], where the importance of
edges is quantified by assigning edges of the network with edge scores. The idea can

3https://github.com/kit-parco/networkit/tree/Dev/networkit

26 2. Background

(a) Original graph (b) Sparsified graph

Figure 2.4: Visualization of LDBC SNB SF1 data friendships using the Kamada Kawai
layout. Case (a) is formed using the entire graph with 9892 nodes and 180623 edges.
Case (b) uses a sparsified version(local similarity sparsification) of the same graph with
9892 nodes and 35022 edges, both, forming “hairballs”.

also be made implicit, being included in the design of a sampling strategy.

The core of most sparsification technique is the sampling strategy it employs. One
simple yet fast sampling strategy is assigning a global score based on a metric (similarity
between nodes or number of triangles an edge is a part of) and mark as “to-be-removed”
all the edges below the specified threshold (e.g. this can mean, for example, to keep
them out of memory). This strategy is known as global sparsification. However, this
strategy fails to capture local structures. Hence, there is a need for a strategy that avoids
relying exclusively on global thresholds, and preserves both local and global structures.
In specific cases like algebraic distance sparsification, this general approach can also be
used to achieve a balance between both global and local structures preservation.
To achieve this [SPR11] suggests that edge scores can be calculated based on some

Figure 2.5: An illustration about the importance of edge sampling with awareness
of global and local contexts: Keeping intra-cluster edges preserves local structures,
removing inter-cluster edges affects the global structures.

2.2. Literature review 27

metric, and then assigned first to all the edges in the graph. Once this is done, the edge
scores are arranged in ascending/descending order. With this strategy, all the edges
with edge scores beyond or below the threshold preserve the global structures or local
structures.

Next we detail some approaches for sparsification. We focus on approaches that are
already available in libraries like NetworkIt.

Random edge sparsification.

This sparsification technique selects edges uniformly at random until a specified sparsifi-
cation ratio is achieved. It is equivalent to selecting edge scores uniformly at random
from a set of given edge scores. Although this approach risks the loss of graph structures,
it is beneficial as a baseline for its ease of application. Random edge sparsification has
proven to perform quite fast when tested on real time Facebook data networks[LSH+15].

Algebraic distance sparsification

This sparsification method is based on a metric known as algebraic distance. The
application of this metric on graphs was introduced in [CS11]. Quantifying distances
between nodes in graphs had always been an important question in computer science
literature. There are numerous ways of quantifying node connectivity (spectral methods,
shortest path, probabilistic methods, flow network capacity based approaches, to name a
few), in a graph. Algebraic distance is a simple-to-compute metric used to model mostly
local connection strengths (though the metric allows for both local and global structure
preserving sparsification). To calculate this metric an iterative method is used, where
connection weights are propagated to the neighborhood of a vertex, until convergence.

A vector of the weighted adjacency matrix of a graph is updated from random ini-
tializations in a given number of iterations. During the execution of the algorithm,
these numbers undergo a relaxation process known as Jacobi overrelaxation, forming a
mutually influenced environment model on the whole, where the connectivity of vertices
is governed by neighborhood vertex connectivity information.

Given below is the formal definition of the algorithm[CS11] to calculate algebraic dis-
tance. Let G = (V, E) be a weighted graph, where V is the set of {1, 2, 3, ... , n}
vertices and E is the set of edges in the graph. Let W = [wij] be the weighted adjacency
matrix of G, where [wij] denotes the edge weight between the vertices i and j. If, there is
no edge between i and j, [wij] = 0. The following algorithm calculates algebraic distance
between two nodes by randomly initializing x(0), where superscript denotes the number
of iterations.

In the above algorithm, a vector x is initialized randomly. In the first step, a weighted
average of all its neighboring vertices information is taken. This calculated value x̃ along
with a relaxation parameter ω and its previous value of x is used to calculate the next
value of x again.

Hence, this can described as an iterative process which uses the (k−1)th approximation of
x to calculate the kth value of x using a weighted average of the previous approximations

28 2. Background

Algorithm 1: Computing algebraic distances for graphs

Input: Parameter ω, initial vector x(0)

1 for k = 1,2,... do

2 x̃(k) ←
∑

j wijx
(k−1)
j /

∑
j wij ∀i

3 x(k) ← (1-ω)x(k−1)+ωx̃(k)

4 end

of neighboring nodes and a relaxation factor ω. The relaxation factor is said to give
good convergence for the values when 0<ω<2. However, in some systems like Networkit
ω = 0.5 and k = 30 are suggested as defaults.

The algebraic distance sparsification in Networkit is done by obtaining the algebraic
distances for all pairs of nodes in the graph and filtering out edges based on these
distances. For each node, the top d neighboring nodes are sampled based on their
algebraic distances. This method can be used for local or global structure preserving or
combination of both[JS16].

Local degree sparsification

This sparsification technique, introduced in [LSH+15] is based on the concept of hub
nodes. Hub nodes are the nodes having relatively higher degrees in the graph.

Figure 2.6: Jazz musicians collaboration network and it’s Local Degree sparsified version
containing 15% of edges[LSH+15].

In this sparsification technique, for each node, degrees of all its neighbouring nodes
are calculated. After this, these degrees are arranged in descending order and the top
bd(u)αc are kept by each node in the graph while the rest of the nodes are removed (i.e.,
put out of memory or marked as not necessary for loading). Here, d(u) is the degree of
vertex u, and α is a parameter used for local or global edge filtering. This technique
prunes the local edges and keeps the global ones.

In order to understand the method better, we give an example.

Example. Let G = (V, E)(Figure 2.7) be an weighted undirected graph with node set V
= A, B, C, D, E. To illustrate local degree sparsification, we consider calculating degrees
of neighboring vertices of node A. Therefore we have, For node A: d(C) = 3, d(B) =

2.2. Literature review 29

Figure 2.7: Sample weighted undirected graph

2, d(D) = 2, d(E)=1. We keep α=1 for convenience. If we set our threshold to be 3,
only the edge to C is preserved because C here is the neighboring node with the highest
degree. The same procedure is repeated for all nodes across the graph. Through this
sparsification technique, neighboring nodes with highest degrees are preserved.

Triangle count sparsification

This sparsification technique is based on listing triangles in a given graph and assigning
edge scores to the edges based on the number of triangles they are present in. This
sparsification technique preserves the local structures. In social networks, this filtering
is done for counting the number of triads. Triads are extremely important by virtue of
a fundamental assumption that two persons with a very high number of mutual friends
are likely to be friends too. Chiba and Nishizeki introduced an algorithm for triangle
listing that counts in the triangles by checking the adjacency between two neighboring
vertexes[CN85]. A parallelized variant of this algorithm has also been introduced [OB14],
being used in NetworkIt.

Algorithm 2: Parallel triangle counting

1 foreach uεV do
2 in parallel
3 Mark all vεN(u)
4 foreach vεN(u) do
5 foreach wεN+(u) do
6 if w is marked then
7 Count triangle u, v, w;
8 else

9 end

10 end

11 end
12 Un-mark all vεN(u);

13 end

30 2. Background

Chiba and Nishizeki’s algorithm starts by sorting the vertices of a given graph in
descending order of their degrees. For each vertex, all the vertices adjacent to that
vertex are marked. The neighbourhoods of each of the marked vertices are checked
and if any vertex in the neighborhood of the current vertex is also checked, then the
three vertexes under consideration are declared as a triangle. As mentioned above, the
sparsification is proceeded by filtering edges based on the number of triangles they are a
part of. This number is assigned as edge score to all the edges of the graph and edges
that belong to more triads than an assigned threshold are kept.

Local similarity sparsification

This sparsification technique[SPR11] is based on a Jaccard similarity measure over the
set of nodes in a given graph.
Jaccard similarity, in general, is given by:

Sim(A, B) = |A|∩|B|/|A|∪|B|

Where A and B are two sets.
In graphs, Jaccard similarity is given by:

Similarity(i, j) = T(i, j)/(d(i)+d(j)-T(i, j)),

where i and j are two nodes, T(i, j) is the number of triangles the edge joining the nodes
i and j is a part of.
Example. Considering the same example we have taken for local degree sparsifcation
(Figure 2.7), we have,

Node set N = A, B, C, D, E
Edge set E = 1, 2, 3, 4, 5, 6

The Jaccard similarity between two given nodes A and C is given by:
Similarity(A, C) = 2/4+3-2 = 1/5 = 0.2
Similarities for all pairs of nodes in the graph this similarity is calculated in the same
manner. A threshold for similarity is set, beyond which, the edges are kept and the rest
are removed (i.e., offloaded from memory). Local similarity sparsification preserves local
structures, and for this, the similarities of neighboring nodes are arranged in descending
order.

2.2.5.2 Embeddings

Graph representation learning is a technique to represent nodes of a graph as vectors in
a n-dimensional vector space, in such a way that structure and other inherent properties
of the graph are preserved, and the graph is accessible to common vector/array-based
machine learning methods (i.e., where entities are represented as an array of features,
for tasks like classification). Figure 2.8 shows an example of a graph embedding of the
Karate club network4. For this example similarity computations could be done on the

4https://iamsiva11.github.io/graph-embeddings-2017-part1/

2.2. Literature review 31

embedded graph by using simple cosine similarity, instead of using Jaccard Similarity
and more hand-crafted similarity on the original graph. Furthermore, the data points in
the embedded space might be easy to index and store (they could require less data),
since they are composed of uniform data types.

Figure 2.8: Nodes of the graph being represented as vectors in 2-dimensional space

Some applications of this approach include node classification, clustering, link predic-
tion and visualization. More recently, graph embedding approach has also been used
for network compression[OCP+16, WCZ16], pattern matching[HPC+18] and pairwise
similarity studies[TMKM18].

In order to give a context, graph embeddings can essentially be treated a dimensionality
reduction procedure where a similarity graph for a D-dimensional graph is constructed
based on the neighborhood of each node. After this process is done nodes are embedded
into a d-dimensional space, where d<<D[YXZ+07]. Usually this embedded space is an
array of floating point values.

Since graph embedding methods capture the original graph to be embedded in a d-
dimensional space (which usually requires less storage per node, in addition to uniform
data types) by preserving desired graph properties, they also somehow serve the purpose
of graph summarization. Despite its advantages, attaining vector representations for
each node in a graph is intrinsically difficult and poses the following challenges:

• Choice of property. As some authors[GF18] point out, it is important to know
which property of the graph should be preserved after representing the nodes
into lower dimensional vector spaces. Given the plethora of properties, such as
similarity, page rank, strongly connected components, we need to know what
property our embedding should preserve and the performance depends on the
application.

• High non-linearity. Often, the underlying graph structures are non linear and
cannot be accurately approximated by linear manifolds[LNHD11]. Easily stated,
to capture detials about the relationships between nodes, complex rather than

32 2. Background

simple models are required. Therefore, there is a need to design models which
capture the non linearity in the underlying structures of the network which is
rather difficult.

• Preserving structure. Structural properties of graphs often exhibit interesting
insights about network data and hence preserving these properties is important.
This is particularly challenging because the underlying structure of real world
networks is complex[SJ09] and it is important to preserve both local and global
properties in order to make accurate analysis.

• Scalability. Most real networks are large, therefore embedding techniques need
to be scalable to large graphs. Some graph embedding techniques involve deep
learning methods to form embeddings as well, since deep learning limits the amount
of memory required to create a machine learning model, it can be an approach for
scalability. But apart from the storage space of a model, there are a number of ways
in which embeddings can be produced (random walks, factorization, and so on).
It is important to make sure that our methods are scalable to large graphs[GF18].

• Sparsity. Real world networks are often sparse and it is difficult to reach good
performance by observing a very limited number of legitimate links[PARS14].

• Dimensionality of the embedding. Choosing the optimum dimension can be hard.
Higher dimensional representations may increase precision whereas lower dimen-
sional representations could help in link prediction accuracy especially if the chosen
model captures local connections[GF18].

[GF18] provides a taxonomy of graph embedding methods and also provides a library
called GEM. GEM contains five graph embedding methods namely: locally linear
embedding, laplacian eigenmaps, graph factorization, higher order proximity preserving
embedding (HOPE), and structure preserving network embedding (SDNE). In this
thesis, we use the GEM python library to get embeddings for LDBC social network data
and make visualizations of the original data and the embedding. We also examine the
training time for each embedding methods for data of two different scale factors.

Laplacian eigenmaps

In the areas of information retrieval, data mining and artificial intelligence, one often
faces the problem of low dimensional data residing on a very high dimensional space.
Although there is a lot of work in literature dealing with the problem of dimensionality
reduction, most approaches do not explicitly consider the structure of the manifold
(i.e., a local space that groups nodes next to some of their properties) on which the
data is present. Laplacian eigenmaps[BN03] is a geometrically motivated approach for
representation of data in lower dimensional spaces in this context.
The crux of the algorithm is a sparse eigenvalue problem, solving this the embedding map
is obtained. There are numerous algorithms to solve the eigenvalue problem. However
there is no approach till now that is said to solve this problem in one iteration. Power
methoda, subspace iterationa, the Jacobi method, and the Arnoldi method are few of

2.2. Literature review 33

the many methods, which can solve this problem in multiple iterations. We now define
the general eigenvalue problem.
Given an n× n matrix A, the eigenvalue problem requires finding a number λ such that,
the following equation is satisfied for some nontrivial vector ~v:

A~v = λ~v

Here the vector ~v is known as the eigenvector, λ is the corresponding eigenvalue, and
A is the transformation matrix. The above expression states that, the matrix vector
multiplication on the left hand side essentially yields a scalar times the same vector. For
the ease visualization, it can also be said that the vector simply changes its magnitude
by expanding or compressing by λ times on its very span without changing it’s direction
even after a transformation, which is described by the matrix A. The above equation
can be rewritten as:

(A - λI)~v = 0

The problem now boils down to looking for values of λ to produce a matrix (A - λI),
when multiplied with ~v yields the zero vector. The only possible way for the product
of a matrix, when multiplied with a nontrivial vector to yield a zero vector is that the
transformation corresponding to that matrix compresses space into a lower dimension,
and this process corresponds to a determinant equal to zero to that particular matrix.
The matrix (A - λI)~v has the diagonal elements of a matrix A subtracted with λ. Hence,
tweaking of λ values in the diagonal elements of the transformation matrix such that
the determinant of the matrix becomes zero results in “squishification” (compression) of
space into lower dimension.
Laplacian eigenmap(LAP) is an embedding technique that uses a normalized Laplacian
matrix of an input graph and finds its eigenvalues and eigenvectors that can squish the
space into a lower dimension. Laplacian eigenmaps aim at keeping the representation of
nodes in lower dimensions close to each other when the weight associated with the edge
connecting the nodes is higher. The weights are assigned either based on a parameter or
are simply assigned the value 1, if two vertices are connected. Optimal embeddings are
obtained by optimizing the following objective function:

Φ(y) =
∑

(yi − yj)2Wij

where yi and yj are elements of a map y = (y1, y2, ..., yn) when a connected graph is
mapped to a line such that connected points are close to each other. A matrix may
possess multiple eigenvectors and eigenvalues. This process is said to yield embeddings
that can preserve local structures and first order proximities, with a time complexity,
O(|E|d2), where E is the number of edges and d is a number such that d<<|V|, V being
the number of vertices in a given input graph[GF18].

34 2. Background

Higher order proximity preserving network embedding

Higher order proximity preserving network embedding(HOPE)[OCP+16] is an embedding
technique that focuses on capturing asymmetric transitivities and preserving higher
order proximities in directed graphs. There are many studies dealing with embedding
directed graphs. However, these methods are not explicitly guaranteed to preserve the
asymmetric properties present in real world finite graphs (i.e., large and infinite graphs
tend to have symmetries). The asymmetric properties informally speaking indicate local
uniqueness in the liking behavior of nodes. Asymmetric transitivities refer to those
asymmetric properties that are also visible when looking at the neighborhood of a node.
Transitivity properties are used in graph analysis tasks such as calculating similarities
between nodes and measuring importance of nodes.
HOPE learns two embedding vectors for each node, to capture the asymmetric transitivity.
These vectors are known as source and target vectors. A directed edge from any vi to
vj in a given graph is represented with similar proximity values in source vector of vi
and target vector of vj. When there is no reverse link, a very different value is assigned
for the source vector of vj and target vector of vi. The intuition behind building these
vectors is that, the more and shorter are the paths available between vi and vj , the more
similar will their source and target vectors respectively. This idea is close to metrics
that measure higher order proximities in graphs such as Katz index, rooted page rank,
common neighbors and Adamic-adar scores. We use the following notations henceforth
for elaborating on how HOPE works.

Notation Description
Mg, Ml Polynomial of matrices
S higher-order proximity matrix
U Embedding matrix
[Us,Ut] Source and target vectors in the embedding matrix
A Adjacency matrix

Table 2.1: Notations used to describe matrices in HOPE

The authors adopt L2-norm to describe the loss function that is to be minimized.

min||S - Us . UtT||2F

A general formulation that facilitates the approximation of higher order proximities is
given by:

S = M−1
g . Ml

To be self-contained we very briefly introduce some proximity measures and their
transformations into the above formulation.
Katz index. Katz index[] or katz centrality is built on the notion that “A node is
important if it is linked from other important nodes or if it is highly linked.”5. It is a

5https://www.sci.unich.it/ francesc/teaching/network/katz.html

2.2. Literature review 35

weighted summation of all the paths passing between two given vertexes in a graph, and
is given by:

SKatz = (I - β.A)−1.β.A

where I is the identity matrix and β is the decay factor that penalizes connections made
with distant neighbors.
Rooted page rank.The similarity matrix is derived from the probabilities that a
random walk from any node vi lands at vj in steady state, and it is given by:

SRPR = (1 - α).(I - αP)−1

where P is the probability transition matrix and α is probability of random walk to a
neighbor.
Common neighbors.For directed graphs, common neighbors are the number of vertices
that act as a source to a vertex vi and target to vertex vj. It is given by:

SCN = A2

Adamic-adar. Adamic-adar assigns a weight to each neighbor, which is the reciprocal
of degree of the neighbor. It is given by:

SAA = A. D. A

where, D is a diagonal matrix given by,

Dii = 1/
∑

(Aij + Aji)

In order to obtain an optimal k-rank approximation of the proximity matrix, A general-
ized singular vector decomposition is performed on the proximity matrix and the largest
K singular values and their respective vectors are used to build optimal embedding.

S =
N∑
i=1

σiv
s
iv

tT

i

where σ1, σ2, ...σN are set of singular values and vsi , vti are corresponding singular vectors
associated with σi.

Node2vec

Node2vec[GL16] is a way of representing nodes of a graph as vectors in vector spaces,
which relies on the skip gram model used by word2Vec. The skip gram model used
by word2vec has many different applications in machine learning, specially in natural
language tasks. It involves training a neural network with a single hidden layer to
perform a specific task. However, in word2vec (or node2vec), it is not used for the task
it is trained on. Instead, the aim is to just learn the weights of the hidden layer. To be

36 2. Background

precise, if given a word from the middle of a sentence and a “near by” word for the given
input word is picked at random, the neural networks provides us with the probability of
that particular word being the “near by” word to the input word.

An insight into the model of word2vec. The output probabilities tell us how likely
it is to find a randomly chosen word being the “near by” for the input word. The input
of the neural network are a set of training samples taken from a sentence in the way
shown in Figure 2.96. For the sentence “The quick brown fox jumps over the lazy dog”,

Figure 2.9: Word2Vec Training neural network by feeding it with word pairs from our
training documents

if the input word is “quick”, the training samples are picked from the words near by as
word pairs. In Figure 2.9, the words highlighted in blue represent the input word. The
above example uses a window size of two for each training sample. This window size can
be configured depending on the requirements of the user. For example, if the window
size is five, five words behind and five words ahead are considered to form the training
samples. While training the neural network, the input vector is given a as one-hot vector.
If our vocabulary has 5000 unique words, this vector will have 5000 components with “1”
at the position of the input word and 0’s at all the other positions.
For example, If we are learning word vectors with 100 features and we have 5000 words in
our vocabulary, the hidden layer is represented by 5000 × 100 weight matrix. Therefore,
the matrix vector multiplication of one-hot vector and weight matrix yields the matrix
row in the weight matrix, corresponding to “1”.
The output layer(Figure 2.117) is a softmax regression classifier, which gets the 1 ×

100 word vector as input. Each output neuron multiplies its weight vector with the
word vector from the hidden layer and applies the activation function exp(x) to get the
results. Finally, the result is divided by the sum of results from all 5000 output nodes,
so that the outputs sum up to 1.

6http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
7http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

2.2. Literature review 37

Figure 2.10: Neural network architecture

Figure 2.11: Word2Vec Output layer: calculating output of the output neuron for the
word “car”.

Node2vec. Node2vec follows the exact same approach for calculating node embeddings.
However, the way node2vec collects training data is much different compared to word2vec.
Node2vec follows second order random walks to obtain training data.
Consider a random walk that just traverses edge (t, v) and now resides at node v. The

Figure 2.12: Node2vec’s second order random walk approach to obtain training data

walk now needs to decide on the next step so it evaluates the transition probabilities
πvx on edges (v, x) leading from v (Figure 2.12[GL16]).

Intuitively, the transition probability determines the likelihood of immediately revisiting
a node in the walk. If parameter q is relatively low, walk is more inclined to visit nodes

38 2. Background

which are further away from the node t. If q is relatively high, the random walk is biased
towards nodes close to node t. Figure 2.13[GL16] shows Complementary visualizations of

Figure 2.13: Visualizations of Les Misérables coappearance network embedding generated
by Node2vec

Les Misérables coappearance network generated by node2vec with label colors reflecting
homophily at the top and structural equivalence at the bottom.

Locally linear embedding

Locally linear embedding[RS00] aims at creating embeddings in low dimensional spaces
assuming that each node is a linear combination of its neighbours in the embedding
space. Therefore, it is defined that,

Yi =
∑
j

WijYj,∀iεV

where,Wij is an element of the weighted adjacency matrix of the graph in consideration
which represents weight of edge between node j and node i.

The embedding is obtained by minimizing,

φ(Y) =
∑
i

|Yi −
∑
j

WijYj|2

Just like LAP, the problem of LLE also broils down to finding eigenvectors of the
representation matrix of the graph under consideration, whose solution is to take the last
d+1 eigen values of the sparse matrix (I −W)T (I −W). LLE is said to preserve first
order proximity with a computational complexity of O(E|d2), where V is the number of
nodes and d is the dimensionality.

2.3. Related work in summarization of large graph data in data management 39

In this section we described several approaches to embedding graph data. There exist
further approaches which consider also content of the nodes. In the next section we
review some early work adopting summarization techniques in graph data management.

2.3 Related work in summarization of large graph

data in data management
Graph summarization is a relatively new field with a lot of scope for exploration. The
existing techniques either process static or dynamic graphs.

Surveys

[YPS+13] presents a survey that mainly focuses on partition-based and compression-based
summarization techniques on static graphs. [LY13] delivers a survey on more specific
methods, again on static graphs only. [LKF05] , in contrast, deals with de-densification
of time evolving graphs. According to this paper, graphs “densify” as they evolve over
time with number of edges growing super-linearly in number of nodes. It introduces a
method for de-densification of these dynamic graphs (a way of summarization) and also
shows that it is related to temporal evolution of degree distribution. [LSDK18] provides
a comprehensive survey about summarization techniques based on inputs that these
techniques process, the core technique itself and output of these techniques. It provides
a taxonomy of approaches to graph summarization.

Graph partitioning, aggregation and compression based summarization

Specifically, the sparsification library we used in this thesis needs input in METIS
format. METIS introduced in [KK00] iteratively finds maximal subgraph matchings and
merges nodes that incident the edge of the matching. The result on the most “coarsened”
is then projected to the original graph. This approach yields compact hierarchical
representations of the original graph and almost duplicates the process of summarization.
[NG04, YL13] also present approaches which deal with grouping of edges into super
nodes also serve the same purpose. [RGSB17] is another method that also generates
super nodes and super edges with some guarantee.

Other variants of summarization techniques are the ones applied in compressed sensing
settings. These methods essentially reduce dense graphs to sparse graph by preserving
some properties of a network[AGM12b, AGM12a, McG14].

[MP10] provides a way to compress social networks and query them efficiently without
decompression. [Ahn13] summarizes biological networks via bit compression. [BV04]
describes a way to compress web graphs and access the compressed graphs, again,
without decompression.

Sparsification techniques

The sparsification techniques we use in this thesis are also structure preserving, designed
specifically for social networks. These techniques employ edge filtering method by
globally assigning scores to edges based on a metric (algebraic distance, triangle count,
for instance). The edges with edge scores higher than a specified threshold are kept.

40 2. Background

[MBC+11] introduces a method called SPINE which sparsifies an influence network by
observing a log of previous propagations. Another variant of sparsification is spectral
sparsification. [SS11] provides a technique to sparsify graphs by keeping edges with a
probability proportional to the effective resistance of the edges. [ST11, BSST13] offer
methods for sparsification based on spectral similarity and [KLM+17] offers methods for
spectral sparsification on dynamic streams.

Graph representation learning

Novel deep learning based network embeddings are becoming increasingly famous
in recent times. The idea of graph embeddings is to reduce the graph to a lower
dimensional space which could possible form a summary of the original graph.[DKM06,
DKM06, MGF11] offer novel factorization approaches on graphs, which reduce a given
graph to much lower dimensional spaces by calculating low rank approximations of
the adjacency matrix which can be seen as approximate summaries of the original
graph. [PARS14, GL16] adopt nodes as low dimensional vectors and, techniques like
SDNE[WCZ16] and LINE[TQW+15] take as input the adjacency matrix of a graph
to an artificial neural networks to form low dimensional structure preserving network
embeddings. More recently, [HPC+18] introduces an approach called PAGE, that makes
an attempt to answer latent queries via sub graph matching in the embedding space.
[NHH+18] integrates RDF data to vector space to create knowledge graphs. [WWL+18]
allows approximate querying in RDF embedding space.

Summarization in database research

The database community has contributed to the field of graph summarization in different
ways. [THP08] introduces SNAP and k-SNAP summaries by grouping the nodes which
share the same attributes. These groups iteratively split to produce groups which are
compatible with relationships to eventually produce maximum attribute and relationship
compatibility. k-SNAP further allows roll-up and drill-down operations on these groups
enabling control of summary resolution. [HST13] provides a scalable algorithm for
graph summarization based on pure relational technology. [STWJ13] extends the above
algorithm but enables data security. [FLWW12] proposes a query preserving lossless
compression algorithm. [SWL+18] introduces a lossy data summarization scheme in
which directed paths up to length ’d’ are preserved. This is achieved by grouping nodes
with similar entities within d hops to one another. [KS08] reduces the search space of
frequent item sets by introducing an algorithm known as R-KRIMP which summarizes
multi-relational data. [ČGM15] proposes a query preserving summarization algorithm
on RDF graphs.

Though studies propose new summarization methods which are highly tied to data
management and real world querying, there is a scarcity of studies to evaluate how these
methods can be leveraged by users of commercial or off-the-shelf databases. Therefore,
from our background study we identify a research gap which we seek to address in our
work.

2.3. Related work in summarization of large graph data in data management 41

Summary
Graph data summarization is a relatively new research field that is gaining attention
in recent times due to increasing applications of linked data. There is a lot of work in
the literature that deals with this area of study. Graph sparsification is the process
of putting some edges out of memory based on a selection criteria, preserving specific
properties of the graph, and making it easy to process with lower memory foot prints.
In this thesis we evaluate random edge sparsification , algebraic distance sparsification,
local degree sparsification, local similarity sparsification, and triangle sparsification. The
generic framework of any sparsification technique is the sampling strategy it employs.
Sparsification can either be global or local depending on various criteria.
Graph embeddings are vector representations of nodes of a graph in lower dimensional
vector spaces. In these representations, structure and other inherent properties are
preserved. Background properties of the graph are preserved, and the graph is accessible
to vector-based machine learning methods. Laplacian eigenmaps, Higher order proxim-
ity preserving network embedding, Node2vec, and Locally linear embedding are four
embedding techniques we evaluate. Laplacian eigenmaps and locally linear embedding
are based on dimensionality reduction, node2vec employs random walk approach to
collect training data, and HOPE preserves higher order proximities through a complex
mechanism that relies on distinguishing the directions of the edges when embedding the
nodes.

In the next chapter we introduce our research questions and experimental design.

42 2. Background

3. Prototypical Implementation

In this chapter, we discuss the prototypical implementation details for both our chosen
methods. We discuss, in detail, the hardware and software configurations, datasets and
libraries used for each of the methods. This chapter is organized as follows:

• In Section 3.1, we discuss the research questions for sparsification and embedding
techniques.

• In Section 3.2, we talk about the implementation details, for both the methods,
LDBC SNB datasets, METIS, Networkit and GEM libraries, and provide some
code snippets of our implementation.

3.1 Research questions
In this thesis we seek to address the practical research gap existing for the adoption of
summarization techniques in graph data management. Specifically we propose to study
for an off-the-shelf database what are the benefits of data summarization, in terms of
runtime for operations that match the data summary. We also would like to consider
how efficient the data summary is, in preserving the characteristics that the operation
studies. Finally, for practical purposes we also propose to include information regarding
the creation of the summaries when using open source libraries, over benchmark data.

We formally propose the following research questions:

3.1.1 Sparsifiers
1. How does the time required to sparsify graph data change with each sparsification

technique?

2. How does average pagerank and betweenness centrality and community count get
affected if the graph data is sparsified using different techniques?

3. How does query execution time change when different queries are run on data
sparsified using different techniques?

44 3. Prototypical Implementation

4. Are these techniques scalable, that is, do the above findings change for data with
a higher scale factor?

3.1.2 Embeddings
1. What is the training time for each graph embedding technique when executed on

LDBC data with 500 persons?

2. What is time taken to find the pairwise cosine similarities for the embedded
data obtained from node2vec on the Neo4j database when compared to manual
implementation using the Python programming language?

3.2 Implementation

3.2.1 Sparsifiers
We have implemented different types of sparsification techniques using the Networkit
library, with a Python 3.5 interpreter on an Ubuntu 16.04 operating system for two
scale factors, SF1 and SF10. We used data generated by LDBC benchmark and made
use of the METIS library for obtaining suitable file formats.

3.2.1.1 Hardware and software configurations

• Machine configuration:

– Operating System: Ubuntu 16.04 LTS

– Processor: Intel R© CoreTM i5 CPU 660 @ 3.33GHz×4, 64-bit

– disk: 483,9 GB

– 7.6GB RAM

• python version: 3.5

• networkit version: 3.4

• Neo4j version: 3.4.9

3.2.1.2 Dataset

We have used the LDBC SNB DATAGEN for data generation. DATAGEN generates
data in CSV files that mimic real world social networks. Figure 3.1 shows the schema
of LDBC SNB data generated by DATAGEN. For sparsification we only use person to
form nodes and ’person knows person’ to form relationships.

Generally, DATAGEN generates a maximum of 33 CSV files in many different config-
urable scale factors. For our evaluation, we have used data of scale factors SF1 and SF10.
For sparsification, we use person for nodes and ’person knows person’ for relationships.

3.2. Implementation 45

Figure 3.1: LDBC SNB Data Schema

File Attributes
person 0 0.csv id, firstName, lastName, gen-

der, birthday, creationDate, loca-
tionIP, browserUsed

person knows person 0 0.csv Person.id, Person.id, creationDate

Table 3.1: The list of CSV files we used for implementation.

3.2.1.3 Libraries

Networkit

Networkit[SSM14] is a python graph library which was implemented specifically for
sparsification of social networks. It is an open source software package that can be
accessed interactively for data analysis using python. A wide variety of sparsification
techniques were implemented and evaluated on real time datasets. Figure 3.2 shows our
usage of triangle sparsification technique using networkit in python.

Networkit uses Cython for writing higher lever Python wrappers. Cython compiles
Python source code to machine-code and also, supports a large subset of Python
language. It acts as a Python extension that allows type declaration (which is not native

46 3. Prototypical Implementation

Figure 3.2: Triangle sparsification using Networkit

to Python programming language) and is compiled directly to C/C++ side-stepping
the Python interpreter which leads to significant speedups. Moreover Cython can
access C++ libraries directly, which allows the programmer to exploit best of both the
worlds[BBC+11].

Figure 3.3: An overview of the Networkit architecture

Figure 3.3[SSM14] shows the overview of the architecture of Networkit. Networkit is a
combination of high-performance C++ code with additional Python functionality and
interface. It allows integration of Python libraries such as pandas, numpy, matplotlib,
scipy, and networkx for data analysis and scientific computing. Cython as described
above is used for writing wrapper classes. OpenMP provides shared memory parallelism.
However we did not use this last feature in our work.

METIS

METIS[KK95] is a framework often used to partition graphs. It takes an input graph
and partitions the graph in a balanced way such that each partition has about the same
number of nodes and optimally minimized number of cut edges. METIS GRAPH Files
have a specific format and certain characteristics, which are suitable as input files for
sparsification using the Networkit Python library.

3.2. Implementation 47

Networkit’s networkit.graphio has several classes to perform various operations on graphs
including read and write. Figure 3.4 shows our usage of METIS file formats that takes

Figure 3.4: Generation of METIS files

inputs from CSV files, reads them as edge lists and coverts them into METIS format.

METIS graph files characteristics and example:

• A graph of N nodes is stored in a file with N+1 lines.

• The first line of the graph contains the number of nodes and edges of the graph.
In addition, it might also contain values that indicate the weights of the graph for
weighted graphs.

• Each line in the file after the first line lists the neighbours of the nodes.

• % in the beginning of a line indicates that the line is commented.

(a) Sample graph (b) Graph file

Figure 3.5: Example of METIS Graph file format for unweighted graphs

3.5(a) and 3.5(b)1 shows an example of METIS file. The first line of the file represents
number of nodes and edges. Subsequent lines indicate the neighbors of the nodes. For
example, neighbors of node 1 can be seen in the first line of the graph, neighbors of
node 2 in second line, and neighbors of node 7 can be seen in the last line.

1METIS manual - http://glaros.dtc.umn.edu/gkhome/

48 3. Prototypical Implementation

3.2.2 Embeddings
We have implemented different graph embeddings using the GEM open source python.

3.2.2.1 Hardware and software configurations

• Machine configuration:

– Operating System: Ubuntu 16.04 LTS

– Processor: Intel(R) Xeon(R) CPU E5-2609 v2 @ 2.50GHz processors×8,
64-bit

– 251GB RAM

• python version: 3.5

• networkit version: 3.4

• Neo4j version: 3.4.9

3.2.2.2 Dataset

We have used Data generated by LDBC SNB DATAGEN for evaluation of graph
embedding techniques. We used the following entities out of all entities that LDBC
offers(Figure 3.1) for graph embedding techniques implementation.

File Attributes
person 0 0.csv id, firstName, lastName, gen-

der, birthday, creationDate, loca-
tionIP, browserUsed

tag 0 0.csv id, name, url
person hasinterest tag 0 0.csv Person.id, Tag.id

Table 3.2: The list of CSV files we used for implementation.

’Person has interest’ represents the relationship between a person and a tag, showing
the interest a person has on a topic. Hence, in this graph both person and tag entities
form nodes of the graph. LDBC SNB offers users the option to configure the size of the
data, in two ways: by setting the scale factor or by configuring the number of persons,
starting year and number of years. We chose to set the number of persons to be 500.
This yielded us roughly 2697 nodes and 16056 relationships, out of which 2197 was the
number of unique tags. We chose this size because the library that we use for evaluation
of different graph embedding methods is scalable only up to this scale factor.

3.2. Implementation 49

3.2.2.3 GEM python library

GEM[GF18] stands for graph embedding methods. It provides open source implementa-
tions2 of various graph embedding techniques such as locally linear embedding, laplacian
eigenmaps, graph factorization, HOPE, SDNE and node2vec. For node2vec, authors of
[GF18] only created a python interface for the original C++ implementation3. GEM
also provides an interface to evaluate learned embeddings for link prediction, node
classification, graph reconstruction, and visualization. This interface supports multiple
metrics like cosine similarity and euclidean distance. GEM uses python libraries such as
numpy, scipy, matplotlib, and networkx for graph embedding methods implementation.
All the graph embedding methods can be run using a python interpreter. However,
Node2vec has to be recompiled from SNAP4

3.2.2.4 Neo4j stored procedures

We use Neo4j stored procedures to calculate pairwise cosine similarities obtained from
the obtained node2vec embeddings. We chose node2vec only because it is the only
implemented embedding technique in GEM that yields embeddings along with labels(tag
ids). We chose to implement pairwise cosine similarities of tags based on the users that
like them. Hence we imported LDBC SNB data with 500 persons and 2197 unique tags
into noe4j database(Section 3.2.2.2).
Neo4j stored procedures are mechanisms through which querying neo4j can be extended
by writing custom code in java programming language in such a way that it can be
called directly via cypher. The java code has to be compiled into a jar file and put in
the plugins directory of noe4j root folder. We called the stored procedure we wrote for
pairwise cosine similarity using cypher as follows:

CALL algo.procedure.cosine()

Given below is a code snippet of the stored procedure we implemented for calculating
pairwise cosine similarities in Neo4j.

public class FullTextIndex

{

private static final Map<String,String> FULL_TEXT =

stringMap(IndexManager.PROVIDER, "lucene", "type", "fulltext");

@Context

public GraphDatabaseService db;

2https://github.com/palash1992/GEM
3https://github.com/aditya-grover/node2vec
4https://github.com/snap-stanford/snap

50 3. Prototypical Implementation

@Context

public Log log;

@Procedure(value = "similarity.procedure")

@Description("Execute lucene query in the given index, return found

nodes")

public Stream<SearchHit> search()

{

Stream<SearchHit> s1 = null, s2;

Boolean s1Empty= true;

String queryString="";

List<String> a= new ArrayList<>();

String[] emb = {

"0.0797428,0.182545,0.0576887,0.0351693",

"-0.0777048,0.386052,0.584654,3.87082",

"-0.0813391,0.0114495,-0.0740742,-0.089435",

"-0.106586,0.0660901,0.0476956,0.11351",

"-0.127242,0.333151,-0.0536305,0.245765",

"-0.015756,0.265684,-0.0116511,0.181644",

"-0.0444543,0.169539,-0.0595563,0.103512",

"-0.0888892,0.116316,0.0829568,0.279422",

"-0.0572816,0.36165,-0.0141653,0.0933123",

"0.0701616,-0.417067,-0.158711,-0.412007",

}

queryString="WITH [";

for(int i=0;i<emb.length-1;i++){

queryString+="{item: "+i+", weights: ["+emb[i]+"]}, ";

}

queryString+="{item: "+(emb.length-1)+", weights:

["+emb[emb.length-1]+"]}] as data CALL

algo.similarity.cosine.stream(data) YIELD item1, item2,

similarity RETURN item1, item2, similarity;";

s1=db.execute(queryString).stream().map(it->new

SearchHit(it.values().stream().map(it2->it2.toString()).collect(Collectors.joining(";"))));

return s1;

}

public static class SearchHit

{

// This records contain a single field named ’nodeId’

public String similarity;

public SearchHit(String similarity)

{

this.similarity = similarity;

}

3.2. Implementation 51

}

}

Summary
For our research we have selected to study the runtime of using summaries for different
kinds of queries that match the summaries. We also propose to evaluate the effectiveness
of the data summary in providing results to these queries which are similar to those
over the non-summarized graph. Finally we also determined to study the summary
creation time. These aspects are condensed in our research questions. The data set used
for evaluation of sparsification techniques is generated using LDBC SNB DATAGEN.
We generated data of two scale factors. The main libraries used for implementation
of sparsification techniques are networkit and METIS. Networkit is a python graph
library which was implemented specifically forsparsification of social networks. It is
an open source software package that can beaccessed interactively for data analysis
using python. METIS frame work is often used to partition graphs. It takes an input
graphand partitions the graph in a balanced way such that each partition has about the
same number of nodes and optimally minimized number of cut edges. METIS GRAPH
Files have a specific format and certain characteristics, which are suitable as input files
for sparsification using networkit Python library.
For implementation of graph embeddings, we set the number of persons to be 500. GEM
library rovides open source implementa-tions2of various graph embedding techniques
such as locally linear embedding, laplacianeigenmaps, graph factorization, HOPE, SDNE
and node2vec.
Neo4j stored procedures were used to calculate pairwise cosine similarities obtained
from embeddings. In the following chapters we answer to the research questions through
evaluation.

52 3. Prototypical Implementation

4. Sparsifiers

In this chapter, we discuss implementation results and our evaluation details regarding
sparsifiers. This chapter is organized as follows:

• In Section 4.1, we recapitulate our research questions for graph sparsification
techniques.

• In Section 4.2, we discuss evaluation and discussion of our results.

4.1 Research Questions
The following are our research questions:

1. How does the time required to sparsify graph data change with each sparsification
technique?

2. How does average pagerank and betweenness centrality and community count get
affected if the graph data is sparsified using different techniques?

3. How does query execution time change when different queries are run on data
sparsified using different techniques?

4. Are these techniques scalable, that is, do the above findings change for data with
a higher scale factor?

4.2 Evaluation and discussion
We used the sparsification techniques described in Section 3.1.1 for our evaluation. We
used betweenness centrality, community detection, connected components, page rank,
and partition size algorithms on data sets sparsified using these techniques. To answer
our research questions we first ran the sparsification algorithms on LDBC SF1 social
networks data generated using LDBC SNB Datagen.

54 4. Sparsifiers

5 · 10−2 0.1 0.15 0.2

Triangle

Random edge

Local similarity

Local degree

Algebraic distance

5.53 · 10−2

2.88 · 10−2

0.1

4.84 · 10−2

0.19

Average sparsification times

T
y
p

e
of

sp
ar

si
fi
ca

ti
on

Figure 4.1: Average sparsification times (ms) for different types of sparsification

4.2.1 Sparsification times (SF1) and description of the sum-
maries

Figure 4.1 shows the average sparsification time taken by different sparsification tech-
niques after 50 iterations.

Unsurprisingly, random edge sparsification takes least time compared to other sparsi-
fication techniques. Random edge sparsification in networkit filters the edges with a
sparsification ratio approximately equal to 0.52. Hence, the time it takes for sparsifi-
cation is linear in number of edges, and is also parallelized. Since it involves selecting
edges randomly to achieve a desires sparsification ratio, we select this as the baseline for
our comparisons.
With this consideration, we observe that algebraic distance, with the highest sparsifica-
tion ratio of approximately 0.98, takes approximately six times more time than that of
random edge sparsification. It involves repeated iterations of taking weighted average
of randomly selected initial vectors and then, using a parameter ω to obtain desired
convergence. l2-norm of pairs of values obtained for each node gives us algebraic distance
between those nodes. Networkit by default performs 30 iterations with ω=0.5(see
Section 2.2.5)
Local similarity sparsification is approximately 3.5 times slower than random edge sparsi-
fication. However, the sparsification ratio of random edge sparsification is approximately
2.58 times higher than that of local similarity.
Random edge sparsification is approximately 2 times faster than local degree sparsifi-
cation with sparsification ratio approximately 2 times lower. Therefore, local degree
sparsification nearly takes the same time as random edge despite the involved runtime
complexity of the algorithm.
Triangle sparsification takes nearly 1.9 times more time than random edge with a sparsi-

4.2. Evaluation and discussion 55

fication ratio of nearly 0.94, that is, nearly 94% of the edges remain after sparsification.
We observe that nearly 45% more edges get sparsified in triangle edge sparsification
compared to random edge with 2 times slower running time.

The baseline data set has 9892 nodes and 180623 edges. Since, we use edge filtering
sparsification techniques the number of nodes remain the same even after sparsification,
however, the number of edges changes. The following is the information of number of
nodes and edges left after different types of sparsification.

Sparsification technique # of nodes # of edges
Baseline 9892 180623
Algebraic distance 9893 178277
Local degree 9892 43255
local similarity 9892 35022
random edge 9892 90541
Triangle sparsifier 9892 170049

In the appendix we include visualizations for the sparsifications at the different scale
factors. We can observe that all methods preserve, at least visually, the global and
local structure of the graph, except for local similarity and local degree, which show
differences. Since the layouting algorithms also has an incidence in this, it is difficult to
make clear conclusions about the extent of the difference.

4.2.2 Queries over sparsified data (SF1): results
To answer our second research question, we ran the following cypher queries on both
sparsified (using all the five techniques we use) and unsparsified LDBC SNB SF1 social
network data by importing it to neo4j graph database:

• betweenness centrality:
CALL algo.betweenness.stream(’Person’,’KNOWS’,direction:’out’)
YIELD nodeId, centrality
MATCH (user:Person) WHERE id(user) = nodeId
RETURN user.id AS user,centrality
ORDER BY centrality DESC;

• Community detection:
CALL algo.louvain.stream(’Person’, ’KNOWS’,)
YIELD nodeId, community
RETURN algo.getNodeById(nodeId).id AS user, community
ORDER BY community;

• Page rank:
CALL algo.pageRank.stream(’Person’, ’KNOWS’, iterations:20, dampingFactor:0.85)
YIELD nodeId, score
RETURN algo.getNodeById(nodeId).name AS page,score

56 4. Sparsifiers

2,000 4,000 6,000 8,000

Baseline

Triangle

Random edge

Local similarity

Local degree

Algebraic distance

6,001.96

4,672.97

4,510.59

2,419.23

1,328.42

5,293.94

Average betweenness centrality

T
y
p

e
of

sp
ar

si
fi
ca

ti
on

Figure 4.2: Average betweenness centrality for different types of sparsification

ORDER BY score DESC

Betweenness centrality

Figure 4.2 shows the change in average betweenness centrality for different types of
sparsification techniques.

In this case, we take the average betweenness centrality of unsparsified data as baseline.
Since the unsparsified original dataset has all the edges present, average betweenness
centrality for this dataset is the highest. We see from Figure 4.2 that the average
betweenness centrality reduces with the number of edges in the graph. Algebraic dis-
tance sparsification with an approximate sparsification ratio of 0.98 reduces the average
betweenness centrality to nearly 1.13 times the original, being the result closest to it.
Triangle sparsification illustrates an average betweenness centrality which is around 1.28
lesser than the baseline with a sparsification ratio approximately 1.1 times lesser.
On the other hand, Local degree sparsification with relatively lower sparsification ratio
possesses an average betweenness centrality which is nearly 4.5 time lesser than the
baseline. Random edge sparsification with sparsification ratio nearly 53% lesser than
triangle sparsification exhibits nearly the same average betweenness centrality with just
a difference of 162 when average centralities of both are compared from the baseline.
Local similarity sparsification has an average betweenness centrality of nearly 2.48 times
lesser than the baseline which is the least compared to other sparsification techniques.

Page rank

Since, both betweenness centrality and page rank are node centrality measures, we
observe that average page rank also follows nearly the same trend as betweenness
centrality in terms of change in page rank with respect to change in number of edges.

4.2. Evaluation and discussion 57

The following table shows the sparsification ratio of each sparsification technique and
the ratio of change in page rank:

Sparsification technique approximate sparsifica-
tion ratio

Decrease in average
page rank

Algebraic distance 0.98 1.3x
Local degree 0.23 2.2x
local similarity 0.19 1.7x
random edge 0.5 1.5x
Triangle sparsifier 0.94 1.33x

Table 4.1: Decrease in average page rank with respect to the baseline for each type of
sparsification

We observe that algebraic distance sparsifier and triangle sparsifier exhibit almost the
same average page rank, which is 1.3 times lesser than that of the original graph after
20 iterations on LDBC SF1 sparsified data, with approximate sparsification ratios 0.98
and 0.94 respectively.

0.1 0.2 0.3 0.4 0.5 0.6

Baseline

Triangle

Random edge

Local similarity

Local degree

Algebraic distance

0.49

0.37

0.33

0.29

0.22

0.37

Average page rank

T
y
p

e
of

sp
ar

si
fi
ca

ti
on

Figure 4.3: Average page rank for different types of sparsification

Local degree sparsification which sparsified the graph relatively more rapidly, shows the
average page rank to be 2.2 times lesser than that of the original graph. Random edge
that sparsified nearly 50% of the edges from the original graph, exhibits an average page
rank nearly 1.5 times lesser than that of the unsparsified graph.

Community count

Neo4j performs community detection using Louvain algorithm. Since the sparsifica-
tion techniques we employed were based on edge filtering, community counts differ for

58 4. Sparsifiers

different sparisification techniques. Simply stated, by removing edges, the algorithms
create the impression that there are more communities in the graph than before. In
this experiment we also observed that the average triangle count lies in the same range
while triangle sparsification. The following table shows the average community counts
for data sparsified using different sparsification techniques.

Sparsification technique approximate sparsifica-
tion ratio

Community count

Baseline N.A 809.16
Algebraic distance 0.98 809.26
Local degree 0.23 1220.16
local similarity 0.19 2041.38
random edge 0.5 1605.56
Triangle sparsifier 0.94 1637.16

Table 4.2: Average community count for different sparsification techniques
We see that with a sparsification ratio of 0.98, ω=0.5, numberSystems=10, and
numberIterations=30, Algebraic distance sparsifier does preserve community counts.
The average community count for all the other sparsifiers increases irrespective
of the sparsification ratios. For local similarity, the average community count
increases by nearly 2.5 times compared to the baseline. In case of random edge
and triangle sparsification, the average community count increases by about 2 times
and local degree sparsifier increases the community count by nearly 1.5 times the baseline.

4.2.3 Queries over sparsified data (SF1): execution times
To answer our third research question we ran the following queries in addition to the
community detection, page rank and betweenness centrality in neo4j database on LDBC
SF1 data:

• Connected components :
CALL algo.unionFind(’User’, ’FRIEND’, write:true, partitionProperty:“partition”)
YIELD nodes, setCount, loadMillis, computeMillis, writeMillis;

• Strongly connected components :
CALL algo.scc(’User’,’FOLLOW’, write:true,partitionProperty:’partition’)
YIELD loadMillis, computeMillis, writeMillis, setCount, maxSetSize, minSetSize;

Connected components, page rank, and partition size

Figure 4.4 shows the average execution times for connected components, page rank, and
partition size queries on LDBC SF1 data in neo4j database: We see that random edge
sparsification and local similarity sparsification show significant speed ups compared
to the baseline for all the three queries. Random edge sparsifier runs the connected
components query nearly 1.28 times faster than the baseline with sparsification ratio as
large as 0.5, and local similarity sparsifier runs the same query nearly 1.4 times faster

4.2. Evaluation and discussion 59

B TS RE LD LS AD

50

60

70

80

90

100

110

Type of sparsification

A
ve

ra
ge

q
u
er

y
ex

ec
u
ti

on
ti

m
e(

m
s)

Connected components Page rank Partition size

Figure 4.4: Average execution times for different types of sparsification

than Random edge sparsifier with sparsification ratio as small as 0.19.
For page rank, random edge, local degree and local similarity sparsifiers show
noticeable speedups. Compared to the baseline, random edge sparsification is nearly 1.2
times faster, and local degree and local similarity sparsifiers are 2 times faster with
sparsification ratios 0.5, 0.23 and 0.19 respectively.
In the case of partition size, all the sparsification techniques other than random edge,
local degree, local similarity and algebraic distance have significant speed ups compared
to the baseline.

Betweenness centrality and community detection

?? shows the average execution time in the betweeenness centrality and community
detection tasks, for different kinds of sparsifications. In the case of betweenness
centrality, all the sparsification techniques perform faster than the baseline. Triangle
sparsification performs 1.6 times faster, random edge sparsification performs 2.2 times
faster, local degree sparsification performs 10 times faster, local similarity sparsification
performs 4 times faster, and algebraic distance sparsification performs 1.14 times faster.
On the other hand, algebraic distance preserves the community count with some specific
parameters although it takes nearly 2 times more query execution time than the baseline
with a sparsification ratio of 0.98.

60 4. Sparsifiers

B TS RE LD LS AD
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Type of sparsification

A
ve

ra
ge

q
u
er

y
ex

ec
u
ti

on
ti

m
e(

m
s)

Betweenness centrality Community detection

Figure 4.5: Average execution times for different types of sparsification

4.2.4 Sparsification times (SF10) and description of the sum-
maries

To answer our forth research question, we repeated all the tests on LDBC SF10 data
with 50 iterations of each query.

Sparsification times

Figure 4.6 shows the change in times, for execution of different sparsification algorithms
on LDBC SF10 data. We noticed significant changes in results compared to SF1 data.
The below table shows the number of nodes and edges after sparsification of LDBC
SF10 data along with the sparsification ratios.
Sparsification technique # of nodes # of edges Approximate spar-

sification ratio
Baseline 65645 1947294 N.A
Algebraic distance 65645 1928513 0.99
Local degree 65645 376240 0.19
local similarity 65645 308113 0.15
random edge 65645 973645 0.49
Triangle sparsifier 65645 1800432 0.92

Table 4.3: Number of nodes and edges after sparsification of SF10 data
Just as in the case of SF1, we take random edge sparsification to be the baseline.
Local similarity sparsification takes the least time on SF10 data, unlike SF1 data, with
sparsification ratio of 0.15, that is, approximately 15% of the edges are preserved after
sparsification. However, local similarity sparsifier preserves more edges when run on

4.2. Evaluation and discussion 61

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3

Triangle

Random edge

Local similarity

Local degree

Algebraic distance

1.01

0.32

0.1

0.62

3.02

Average sparsification times(ms)

T
y
p

e
of

sp
ar

si
fi
ca

ti
on

Figure 4.6: Average sparsification times for different types of sparsification on LDBC
SF10 data

SF1 data with approximate sparsification ratio of 0.23. It preserves 30% more edges
compared to random edge sparsifier with sparsification execution time nearly 3 times
lesser.
Local degree sparsifier preserves 19% of the edges after sparsification of SF10 data. For
SF1, it stores approximately 23% of the edges. However, compared o when run on the
SF1 data, it is nearly 3 times slower. However on SF10 data, random edge sparsification
is nearly 2 times faster.
Triangle sparsification is nearly 4 times slower than random edge with sparsification
ratio that is 2 times higher. Compared to when run on SF1 data, triangle sparsification
preserves nearly the same number of edges with a mild difference of 2%.
Algebraic distance takes the most time for sparsification as in SF1 data. Random edge
performs nearly 10 times faster than algebraic distance with a sparsification ratio that
is 2 times less. Algebraic distance sparsification scales to SF10 in terms of sparsification
ratio with a slight difference of 1%.

4.2.5 Queries over sparsified data (SF10): results
Betweenness centrality

Figure 4.7 shows the change in betweenness centrality with change in sparsification
technique compared to the unsparsified data. Like in the case of SF1, algebraic distance
sparsification exhibits highest average betweenness centrality, with highest sparsification
ratio, compared to other techniques. The average betweenness centrality is about 1.13
times less than the baseline just like in SF1.

Triangle sparsification with an approximate sparsification ratio of 0.92 in the case of
SF10 data exhibits an average betweenness centrality that is 1.24 times lesser than
the baseline. In the case of SF1 data, triangle sparsification showed a decrease of 33%

62 4. Sparsifiers

5,000 15,000 25,000 35,000 45,000 55,000

Baseline

Triangle

Random edge

Local similarity

Local degree

Algebraic distance

Average betweenness centrality

T
y
p

e
of

sp
ar

si
fi
ca

ti
on

Figure 4.7: Average betweenness centralities for different types of sparsification

in average betweenness centrality with a sparsification ratio nearly equal to that of
sparsification ratio of SF10 data with a mild difference of 2%.
Local similarity sparsification exhibits an average betweenness centrality, which is 1.8
times lesser than the baseline by keeping nearly 15% of the edges from the original data.
Local degree sparsification keeps nearly 19% of the edges with an average betweenness
centrality that is nearly 5 times lesser than that of the baseline.
Random edge sparsification with a sparsification ration of nearly 0.49 displays an average
betweenness centrality that is nearly 1.2 times lesser than the baseline. For SF1 data, it
shows an average betweenness centrality, which is 1.3 times that of the baseline. This
goes to show that, despite the slight difference in sparsification ratios for both SF1 and
SF10, the average betweenness centrality is reduced by nearly same multi folds.
Triangle sparsification reduces the average betweenness centrality of the sparsified graph
to nearly 1.24 times the baseline with a sparsification ratio of 0.92. In the case of SF1,
it reduces the average betweenness centrality to 1.28 times that of the baseline with a
sparsification ratio of 0.94.

Page rank

Triangle sparsification reduces the number of edges in SF10 data to 92% of the original
unsparsified data with a sparsification ratio that si second highest compared after
algebraic distance. With this change in number of edges, it reduces the average page
rank by 1.4 times. For SF1 data, it reduces the average page rank of the network by
nearly 1.3 times with a sparsification ratio of 0.94.
Random edge sparsification reduces the average page rank by 1.5 times with a sparsifi-
cation ratio of nearly 0.49. For SF1 data, it reduces the average page rank to the same
extent with sparsification ratio of nearly same which is 0.49.
Local similarity sparsification reduces the average page rank of the network by approxi-
mately 2.5 times with a sparsification ratio as less as 0.15. Algebraic distance and local

4.2. Evaluation and discussion 63

0 0.1 0.2 0.3 0.4 0.5 0.6

Baseline

Triangle

Random edge

Local similarity

Local degree

Algebraic distance

Average page rank

T
y
p

e
of

sp
ar

si
fi
ca

ti
on

Figure 4.8: Average page ranks for different types of sparsification

degree reduce the average page rank of the network by approximately 2 and 2.4 times
respectively. Sparsification ratio of algebraic distance sparsifier was 0.99 and that of
local degree was 0.19.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

Baseline

Triangle

Random edge

Local similarity

Local degree

Algebraic distance

Average community count

T
y
p

e
of

sp
ar

si
fi
ca

ti
on

Figure 4.9: Average community count for different types of sparsification

Figure 4.10 and Figure 4.11 show the average execution times for the chosen cypher
queries on SF10 data, and Table 4.4 summarizes the change in average betweenness
centrality, community count and page rank for both SF1 and SF10 data for all types of
sparsification.

64 4. Sparsifiers

BC TS RE LD LS AD

400

600

800

1,000

1,200

Type of sparsification

A
ve

ra
ge

q
u
er

y
ex

ec
u
ti

on
ti

m
e(

m
s)

Connected components Page rank Partition size

Figure 4.10: Average execution times for different types of sparsification

Summary
For SF1 data, random edge sparsification takes the least time followed by, local degree,
triangle, local similarity, and algebraic distance, with respect to the sparsification task.
The average betweenness centrality (after 50 iterations) is the highest for unsparsified
data followed by algebraic distance, triangle, random edge, local similarity, and local
degree.
Random edge sparsification and local similarity sparsification show significant speed ups
compared to the baseline for connected components, page rank, and partition size. For
page rank, random edge, local degree and local similarity sparsifiers show noticeable
speedups. In the case of betweenness centrality, all the sparsification techniques perform
faster than the baseline. On the other hand, algebraic distance preserves the community
count with some specific parameters. We also observe lossless results for number of
partitions for all sparsification techniques except random edge and triangle. In terms
of query execution times, we observe benefits only for connected components on local
similarity sparsified version.
For SF10 data, Local similarity sparsification takes the least time. It preserves 30%
more edges compared to random edge sparsifier with sparsification execution time
nearly 3 times lesser. Like in the case of SF1, algebraic distance sparsification exhibits
highest average betweenness centrality compared to other techniques. despite the slight
difference in sparsification ratios for both SF1 and SF10, the average betweenness
centrality is reduced by nearly same multi folds. Algebraic distance sparsification
preserves community counts in specifica settings for SF10 data. We particularly observe
benefits for connected components in terms of query execution times. The average

4.2. Evaluation and discussion 65

B TS RE LD LS AD

0

0.2

0.4

0.6

0.8

1

·106

Type of sparsification

A
ve

ra
ge

q
u
er

y
ex

ec
u
ti

on
ti

m
e(

m
s)

Betweenness centrality Community detection

Figure 4.11: Average execution times for different types of sparsification

query execution time after 50 iterations is less compared to the baseline.

66 4. Sparsifiers

Type of sparsification
SF1 SF10

SR
↓↑ w.r.t baseline

SR
↓↑ w.r.t baseline

↓BC ↑CC ↓PR ↓BC ↑CC ↓PR
Algebraic distance 0.98 1.13 nearly same 1.3 0.99 1.13 nearly same 2
Local degree 0.23 4.1 1.5 2.2 0.19 4.6 1.73 2.41
Local similarity 0.19 2.48 2.5 1.7 0.15 1.8 2.95 1.78
Random edge 0.5 1.3 1.98 1.5 0.49 1.2 1.59 1.5
Triangle 0.94 1.28 2 1.3 0.92 1.24 2.64 1.4

Table 4.4: Average betweenness centrality, average page rank and average community
count for both SF1 and SF10 data. The numbers in the table represent the number
of times by which there is increase(↑) or decrease(↓) in each feature w.r.t respective
baselines. SR, BC, CC, PR represents sparsification ratio, betweenness centrality,
community count, and page rank respectively.

5. Graph Embeddings

Structure
• In Section 5.1, we recapitulate our research questions for embeddings.

• In Section 5.2, we talk about the evaluation and discussion of our results.

5.1 Research questions
1. What is the training time for each graph embedding technique when executed on

LDBC data with 500 persons?

2. What is time taken to find the pairwise cosine similarities for the embedded
data obtained from node2vec on the Neo4j database when compared to manual
implementation using the Python programming language?

5.2 Evaluation and Discussion
Out of all the open source implementations provided by GEM, we used locally linear
embedding, laplacian eigenmaps, HOPE and node2vec for our evaluation. To answer
our first research question, we ran the above mentioned techniques using GEM python
library.

5.2.1 Embedding times
We made the following observations in executions times for the chosen embedding
techniques after running each of them over 100 iterations. Out of all the chosen
embedding techniques, node2vec has the highest running time as seen in Figure 5.1.
We have taken a set of specifications to run node2vec:
specifications.
Number of dimensions: 4,
Length of walk per source: 80,
Number of walks per source: 10,

68 5. Graph Embeddings

0.5 1 1.5 2 2.5 3 3.5 4 4.5

LLE

HOPE

LAP

N2V

1.5

1.42

0.23

3.8

Average execution time

T
y
p

e
of

gr
ap

h
em

b
ed

d
in

g
te

ch
n
iq

u
e

Figure 5.1: Average execution times for each embedding technique(seconds)

Context size for optimization: 10,
Number of epochs in SGD: 1
It is to be noted that when we changed the length of walks per source to 3, we observed
that the execution time reduced drastically by nearly 63 times. Similarly, when we
changed the number of dimensions to 128 keeping length of walk per source at 80, we
observed the average running time increase by nearly 3 times. Below are the execution
times for different dimensions and walks per source:
Laplacian eigen maps, which involves calculating eigen vectors of a given Laplacian
matrix, takes much less time to calculate embeddings. With time complexity of O(E|d2),
where E is the number of edges and d is the number of dimensions, LAP preserves the
first order proximity. Node2vec on the other hand, with time complexity of O(V|d),
where V is the number of nodes in the graph, preserves 1-kth proximity[GF18]. It
is also important to note that, node2vec employs biased random walks to provide
trade-off between breadth first search and depth for search approaches[GF18, GL16].
However, node2vec provides more informative embeddings in the sense that, it provides
embeddings along with node ids, which no other GEM embedding implementations
provide.
HOPE and LLE on the other hand take nearly 2.5 times less time than node2vec.
Although both node2vec and HOPE preserve higher order proximity, HOPE has the
same time complexity as LAP. The major difference between HOPE and LAP (or LLE)
is that, HOPE preserves higher order proximity and LAP(and LLE) preserve only first
order proximity. LLE, like LAP employs dimensionality reduction approach to obtain
embeddings with a time complexity of O(E|d2).

5.2. Evaluation and Discussion 69

Number of dimensions Length of walks per source Execution times (s)
4 3 5.17967832088
4 80 5.34998829365
128 80 71.7708213568

Table 5.1: Execution times to calculate pairwise cosine similarities of node2vec embedded
data in python (average of 10 repetitions each)

5.2.2 Queries over embedded data: execution times
To answer our second research question, we made use of stored procedures in Neo4j
(Chapter 3). We calculated node2vec embeddings through GEM library, compiling via
SNAP, and ran a stored procedure in Neo4j for calculating cosine similarities. Time taken
to calculate pairwise cosine similarities of node2vec embeddings (no. of dimensions = 4,
length of walks per source = 80) is 14455ms. We observe that time taken to calculate
pairwise cosine similarities for same specifications via a self-written python program is
much less (in avwerage 5349 ms). We also checked the execution time for calculating
pairwise cosine similiaties for different configurations in node2vec. We observed that, as
the number of dimensions increased to 128, there is a drastic increase in execution time
to calculate pairwise cosine similarity (Table 5.1).

Pairwise similarities of unembedded data
After, calculating pairwise similarities of node2vec embeeded data, we ran the following
cypher query in neo4j database on the original nodes to check if the similarities matched:

MATCH (p:Person), (c:Tag)
OPTIONAL MATCH (p)<-[likes:HAS INTEREST]-(c)
WITH item:id(c), weights: collect(coalesce(likes.score, 0)) as userData WITH
collect(userData) as data
CALL algo.similarity.cosine.stream(data)
YIELD item1, item2, count1, count2, similarity
RETURN algo.getNodeById(item1).id AS from, algo.getNodeById(item2).id AS to,
similarity
ORDER BY similarity DESC

We observed that the average time taken to run this query on unembedded data is
32985.6 on average over 10 repetitions.

Semantic equivalence
After calculating the pairwise cosine similarities of node2vec embedded data for
different dimensions and lengths of walks per source, we tried to analyze their semantic
equivalences. Since, since the meaning and goodness of the query results are not the
purpose of this thesis, we add our inferences in the appendix.

Cosine similarities of node2vec embeddings explain the structural equivalence of nodes
since node2vec preserves structures. If two tags have a high similarity, it is highly likely

70 5. Graph Embeddings

that they are liked by same set of users. Therefore, these results have applications to
reccommender systems. Moreover, graph-based reccommender systems do not face the
problem of data sparsity that a normal reccommender system would face. For semantic
equivalence of our results, please refer to Appendix.

Summary
The execution time for node2vec changes as the length of walks per source changes.
Time taken to calculate pairwise cosine similarities increases with increase in number
of dimensions. The average time taken to calculate pairwise cosine similarities is
significantly less when compared to the time taken to calculate via stored procedure. We
also observe that the time taken to calculate pairwise similarities on unembedded data
is nearly 6 times higher compared to execution on embedded data using self written
python code.

6. Conclusion and Future Work

Recapitulating our research question, we examined the performance of graph data
summaries on some specific graph database tasks. We loaded a social network data
sets of two different scale factors that mimicked real world data using LDBC SNB
DATAGEN. We ran five different sparsification algorithms on these datasets to get their
structure preserving sparsified versions, using a python library, networkit.
We observed that the average community count is preserved for a specific setting
in algebraic distance sparsification. We also observed significant speedups in query
execution times for most of these techniques for specific queries. Particularly, although
the sparsification ratio of local similarity sparsification is not the least, we see significant
speedup in running all the queries for all the sparsification techniques. Specifically,
Random edge sparsification and local similarity sparsification show notable speed ups
compared to the baseline for connected components, page rank, and partition size. For
page rank, random edge, local degree and local similarity sparsifiers show noticeable
speedups. In the case of betweenness centrality, all the sparsification techniques perform
faster than the baseline. For SF10 data, Local similarity sparsification takes the least
time. Like in the case of SF1, algebraic distance sparsification exhibits highest average
betweenness centrality, with highest sparsification ratio, compared to other techniques.
In the case of graph embeddings, the average time taken to calculate pairwise cosine
similarities is significantly less when compared to the time taken to calculate via stored
procedures. We also observe that the time taken to calculate pairwise similarities on
unembedded data is much higher higher compared to execution using self written
python code.

Future work

Neo4j offers APOCS, a library to write custom algorithms and user defined functions,
while using efficient primitives supported by the graph database. APOCS for different
graph summarization techniques can be written and added. Existing graph summa-
rization techniques do not deal well for graphs with properties. Hence, developing
algorithms to deal with properties could be a valuable contribution. Current representa-

72 6. Conclusion and Future Work

tional learning techniques only deal with static graphs. Graph stream embedding could
be an interesting area to explore. Handling diverse input types for summarization is
also an unexplored area of research. As of now, each sparsification technique only deals
with very specific queries or approximate queries. Developing a generic framework that
accommodates more types of queries for different types of sparsifications could be an
area of improvement.

7. Appendix

In this appendix we provide further information, which might be relevant to understand
better our study. We begin by disclosing the top page ranks, which apart from the
average page rank reported in our study, gives more insights into the dynamics of the
ranking. We found that a mismatch between identifiers prevents us from understanding
in a comparable manner the results of the baseline against that of sparsified approaches.
Nonetheless, it is possible to see that the top items are similar between the sparsified
approaches, except for local similarity. Similar findings occur at other scale factors and
for other aspects, such as betweeness centrality.
Top 10 page ranks for LDBC SNB SF1 data:

• Baseline version:

Id Rank
32985348841922 54.9478595
30786325585162 32.4143255
32985348842270 32.4124895
32985348834375 26.659851
32985348840984 25.0260235
32985348843944 24.153915
32985348843769 20.33206
30786325583918 20.1957625
32985348842280 19.659693
30786325581208 19.0356655

• Random edge sparsified version

74 7. Appendix

Id Rank
3412 14.661047
3627 12.21745
2194 10.8081755
10995116279283 10.567073
870 8.6449255
609 8.1232635
2608 7.21299
1564 6.874061
1753 6.3664495
2199023255688 6.2369775

• Algebraic distance sparsified version

Id Rank
3412 18.854386
2194 16.6818965
3627 15.226892
10995116279283 13.122139
870 13.001201
5113 12.907769
10026 12.3314265
6690 12.161622
609 11.08406
4848 10.199295

• Local degree sparsified version
Id Rank
3412 51.179954
10995116281261 24.6105095
4517 18.184365
10104 13.024168
13194139539713 10.804648
4398046516395 9.343396
2608 8.978457
2194 8.4959375
8599 8.1956155
4398046514585 7.875123

75

• Triangle sparsified version

Id Rank
3412 18.2684385
2194 17.9099595
3627 15.9220305
6690 14.1451565
5113 13.8293305
870 13.7231485
10995116279283 13.712498
10026 12.957613
609 12.415653
150 11.5862485

• Local similarity sparsified version
Id Rank
6061 4.041946
4398046511185 3.978689
143 3.3842075
6717 3.2550585
2519 3.2407445
8796093022938 3.2160095
2698 3.199885
150 2.9555185
3825 2.871632
6597069769386 2.8106445

Top 10 betweenness centralities for LDBC SNB SF10 data:

• Baseline version:

Id Centrality
17592186083813 9877615.796
17592186112916 9183340.82
13194139587125 7873588.086
15393162855740 7799457.614
24189255822332 7776284.116
17592186115216 7756088.929
24189255818480 7354880.78
24189255878619 7018813.933
10995116326262 7004635.847
13194139581724 6982680.058

• Random edge sparsified version

76 7. Appendix

Id Centrality
36226 10121131.14
29011 9731099.952
9116 7559465.624
55828 7497495.602
2199023306776 6148352.919
18879 4844960.302
6597069780295 4808066.216
22140 4759070.713
2199023282670 4702890.376
38518 4682517.363

• Algebraic distance sparsified version

Id Centrality
36226 14398169.12
9116 13926489.49
29011 12094094.29
2199023306776 11123489.66
55828 10011858.21
2194 7059864.842
22140 6737954.415
2783 6579571.963
4534 6471255.633
18879 6369084.556

• Local degree sparsified version

Id Centrality
36226 8818051.088
18879 8740315.152
29011 8438802.537
2199023308999 7258244.829
9116 6909976.18
6597069811451 6834822.973
4398046578617 6026489.061
2199023269673 5859624.788
4398046534165 5554393.51
6597069780295 5466626.357

77

• Triangle sparsified version

Id Centrality
36226 12517524.27
9116 11942286.58
29011 11142226.38
2199023306776 10018533.75
55828 8871860.527
4398046526403 5939827.604
18879 5812819.165
2199023269673 5592670.028
2783 5533730.888
2194 5362183.108

• Local similarity sparsified version

Id Centrality
39715 1876040.706
24189255824932 1806431.81
6597069828476 1683650.96
8796093077626 1442415.493
13194139555194 1366794.036
7375 1338085.015
15393162842631 1171896.245
8796093031057 1171603.247
21990232617201 1156878.089
13194139580971 1121364.785

Top 10 page ranks for LDBC SNB SF10 data:

• Baseline version:

Id Rank
32985348902205 133.817481
32985348904217 88.104022
32985348904798 84.6787855
32985348905770 84.56758
35184372118193 72.019217
32985348905111 66.990991
32985348901067 66.8596405
32985348905164 62.089823
32985348905743 60.7240175
32985348905625 59.688726

78 7. Appendix

• Random edge sparsified version:

Id Rank
2783 46.7846465
2194 38.2352445
7725 32.7192375
2317 27.920996
4534 27.118562
4607 22.484651
4555 22.221236
3627 20.263397
10024 19.7005355
8061 19.6000485

• Algebraic sparsified version:

Id Rank
2783 73.651982
2194 54.606967
7725 49.8837635
2317 49.169721
4534 39.6113095
4607 33.6236205
1564 30.909222
4273 30.191703
4555 30.0098455
6006 29.976568

• Local degree sparsified version:

Id Rank
2783 135.1561375
2194 107.854333
7725 84.549186
4534 72.3473
9116 69.994041
55828 63.883272
4555 61.8168795
29011 56.377075
2199023306776 52.499256
36226 49.4173175

• Triangle sparsified version:

79

Id Rank
2783 73.0690435
7725 50.3346375
2194 48.7567315
2317 47.671256
4534 36.985073
4607 31.7500505
10024 30.482845
3627 30.0686825
1564 29.883646
6006 29.3935275

• Local similarity sparsified version:

Id Rank
870 12.3303895
4607 9.4795915
2310 8.475529
974 8.209445
14330 6.9434635
10024 6.8453905
1490 6.8334055
8911 6.1900915
2214 6.1227715
71774 6.0810195

80 7. Appendix

Top 20 most similar nodes(tags) after embedding them using Node2vec tech-
nique and calculating similarities using stored procedure in Neo4j for differ-
ent dimensions(d) and lengths of walks per source.
In our observation on the nearest neighbours using pairwise cosine similarity, we find
that the top 20 do not seem to be reasonably well related for most cases (e.g tags that
refer to historical figures are considered to be similar to tags related to songs); however
this improves with a larger extent for the random walk, and for larger dimensions. d=128
and l=80 seems to give better results.

1. Top 20 most similar nodes (Node2Vec d=4, l=3)

Figure 7.1: Top 20 most similar nodes (Node2Vec d=10, l=80)

2. Top 20 most similar nodes (Node2Vec d=128, l=80)

Figure 7.2: Top 20 most similar nodes (Node2Vec d=128, l=80)

81

3. Top 20 most similar nodes (Node2Vec d=4, l=80

Figure 7.3: Top 20 most similar nodes (Node2Vec d=4, l=80)

4. Top 20 most similar nodes (Node2Vec d=4, l=3)

Figure 7.4: Top 20 most similar nodes (Node2Vec d=4, l=3)

82 7. Appendix

Visualizations:

83

Figure 7.5: Visualization of SF1 LDBC dataset

84 7. Appendix

Figure 7.6: Visualization of random edge sparsified SF1 LDBC dataset

85

Figure 7.7: Visualization of SF1 algebraic distance sparsified LDBC dataset

86 7. Appendix

Figure 7.8: Visualization of SF1 local degree sparsified LDBC dataset

87

Figure 7.9: Visualization of SF1 triangle sparsified LDBC dataset

88 7. Appendix

Figure 7.10: Visualization of SF1 local similarity sparsified LDBC dataset

89

Figure 7.11: Visualization of SF10 LDBC dataset

90 7. Appendix

Figure 7.12: Visualization of SF10 random edge sparsified LDBC dataset

91

Figure 7.13: Visualization of SF10 algebraic distance sparsified LDBC dataset

92 7. Appendix

Figure 7.14: Visualization of SF10 local degree sparsified LDBC dataset

93

Figure 7.15: Visualization of SF10 triangle sparsified LDBC dataset

94 7. Appendix

Figure 7.16: Visualization of SF10 local similarity sparsified LDBC dataset

Bibliography

[AAB+17] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter,
and Domagoj Vrgoč. Foundations of modern query languages for graph
databases. ACM Computing Surveys (CSUR), page 68, 2017. (cited on

Page 14 and 23)

[Ach03] Dimitris Achlioptas. Database-friendly random projections: Johnson-
lindenstrauss with binary coins. Journal of computer and System Sciences,
pages 671–687, 2003. (cited on Page 15)

[AFK01] James Abello, Irene Finocchi, and Jeffrey Korn. Graph sketches. Proceedings
of the IEEE Symposiom on Information Visualization, San Diego, CA, 2001.
(cited on Page 15)

[AG08] Renzo Angles and Claudio Gutierrez. Survey of graph database models.
ACM Computing Surveys (CSUR), page 1, 2008. (cited on Page 14)

[AGM12a] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph
structure via linear measurements. In Proceedings of the twenty-third
annual ACM-SIAM symposium on Discrete Algorithms, pages 459–467,
2012. (cited on Page 15 and 39)

[AGM12b] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches:
sparsification, spanners, and subgraphs. In Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGAI symposium on Principles of Database Systems,
pages 5–14, 2012. (cited on Page 14 and 39)

[Ahn13] Sebastian E Ahnert. Power graph compression reveals dominant rela-
tionships in genetic transcription networks. Molecular BioSystems, pages
2681–2685, 2013. (cited on Page 39)

[B+16] Albert-László Barabási et al. Network science. Cambridge university press,
2016. (cited on Page 7, 14, 19, and 20)

[BBC+11] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre
Seljebotn, and Kurt Smith. Cython: The best of both worlds. Computing
in Science & Engineering, IEEE, pages 31–39, 2011. (cited on Page 46)

96 Bibliography

[BBP05] Christian Borgelt, Michael R Berthold, and David E Patterson. Molecular
fragment mining for drug discovery. In European Conference on Symbolic
and Quantitative Approaches to Reasoning and Uncertainty, pages 1002–
1013, 2005. (cited on Page 19)

[BGL11] Albert-László Barabási, Natali Gulbahce, and Joseph Loscalzo. Network
medicine: a network-based approach to human disease. Nature reviews
genetics, page 56, 2011. (cited on Page 19)

[BHN+02] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti,
and Shashank Sudarshan. Keyword searching and browsing in databases
using banks. In Data Engineering, 2002. Proceedings. 18th International
Conference on, pages 431–440, 2002. (cited on Page 23)

[BKS02] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins:
optimal xml pattern matching. In Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, pages 310–321, 2002.
(cited on Page 23)

[BN03] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation, pages 1373–1396,
2003. (cited on Page 17 and 32)

[BO04] Albert-Laszlo Barabasi and Zoltan N Oltvai. Network biology: understand-
ing the cell’s functional organization. Nature reviews genetics, page 101,
2004. (cited on Page 19)

[BSST13] Joshua Batson, Daniel A Spielman, Nikhil Srivastava, and Shang-Hua Teng.
Spectral sparsification of graphs: theory and algorithms. Communications
of the ACM, pages 87–94, 2013. (cited on Page 8, 25, and 40)

[BV04] Paolo Boldi and Sebastiano Vigna. The webgraph framework i: compression
techniques. In Proceedings of the 13th international conference on World
Wide Web, pages 595–602, 2004. (cited on Page 39)

[ČGM15] Šejla Čebirić, François Goasdoué, and Ioana Manolescu. Query-oriented
summarization of rdf graphs. Proceedings of the VLDB Endowment, pages
2012–2015, 2015. (cited on Page 40)

[CN85] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing
algorithms. SIAM Journal on Computing, pages 210–223, 1985. (cited on

Page 16 and 29)

[Cor11] Graham Cormode. Sketch techniques for approximate query processing.
Foundations and Trends in Databases. NOW publishers, 2011. (cited on

Page 15)

Bibliography 97

[CS11] Jie Chen and Ilya Safro. Algebraic distance on graphs. SIAM Journal on
Scientific Computing, pages 3468–3490, 2011. (cited on Page 16 and 27)

[CWPZ18] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. A survey on network
embedding. IEEE Transactions on Knowledge and Data Engineering, 2018.
(cited on Page 18)

[CYD+08] Jiefeng Cheng, Jeffrey Xu Yu, Bolin Ding, S Yu Philip, and Haixun Wang.
Fast graph pattern matching. In Data Engineering, 2008. ICDE 2008.
IEEE 24th International Conference on, pages 913–922, 2008. (cited on

Page 23)

[CZC18] Hongyun Cai, Vincent W Zheng, and Kevin Chang. A comprehensive
survey of graph embedding: problems, techniques and applications. IEEE
Transactions on Knowledge and Data Engineering, 2018. (cited on Page 18)

[DKM06] Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo
algorithms for matrices iii: Computing a compressed approximate matrix
decomposition. SIAM Journal on Computing, pages 184–206, 2006. (cited

on Page 40)

[FLWW12] Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. Query preserving
graph compression. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 157–168, 2012. (cited on Page 40)

[Gal06] Brian Gallagher. Matching structure and semantics: A survey on graph-
based pattern matching. AAAI FS, pages 45–53, 2006. (cited on Page 23)

[GF18] Palash Goyal and Emilio Ferrara. Graph embedding techniques, applica-
tions, and performance: A survey. Knowledge-Based Systems, pages 78–94,
2018. (cited on Page 18, 31, 32, 33, 49, and 68)

[GL16] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 855–864, 2016.
(cited on Page 17, 35, 37, 38, 40, and 68)

[Hop07] Andrew L Hopkins. Network pharmacology. Nature biotechnology, page
1110, 2007. (cited on Page 19)

[HPC+18] Sanghyun Hong, Noseong Park, Tanmoy Chakraborty, Hyunjoong Kang,
and Soonhyun Kwon. Page: Answering graph pattern queries via knowledge
graph embedding. In International Conference on Big Data, pages 87–99,
2018. (cited on Page 31 and 40)

98 Bibliography

[HST13] Nasrin Hassanlou, Maryam Shoaran, and Alex Thomo. Probabilistic graph
summarization. In International Conference on Web-Age Information
Management, pages 545–556, 2013. (cited on Page 40)

[HYL17] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning
on graphs: Methods and applications. arXiv preprint, 2017. (cited on

Page 17)

[IR15] Emil Eifrem Ian Robinson, Jim Webber. Graph databases, 2nd edition new
opportunities for connected data. chapter 6. O’Reilly Media, 2015. (cited

on Page v, 21, and 22)

[JS16] Emmanuel John and Ilya Safro. Single-and multi-level network sparsification
by algebraic distance. Journal of Complex Networks, pages 352–388, 2016.
(cited on Page 16 and 28)

[KK95] George Karypis and Vipin Kumar. Metis–unstructured graph partitioning
and sparse matrix ordering system, version 2.0. 1995. (cited on Page 46)

[KK00] George Karypis and Vipin Kumar. Multilevel k-way hypergraph partitioning.
VLSI design, pages 285–300, 2000. (cited on Page 39)

[KLM+17] Michael Kapralov, Yin Tat Lee, CN Musco, CP Musco, and Aaron Sidford.
Single pass spectral sparsification in dynamic streams. SIAM Journal on
Computing, pages 456–477, 2017. (cited on Page 16 and 40)

[KS08] Arne Koopman and Arno Siebes. Discovering relational item sets efficiently.
In Proceedings of the 2008 SIAM International Conference on Data Mining,
pages 108–119, 2008. (cited on Page 40)

[KW14] Michael Kapralov and David Woodruff. Spanners and sparsifiers in dynamic
streams. In Proceedings of the 2014 ACM symposium on Principles of
distributed computing, pages 272–281, 2014. (cited on Page 16)

[KWY12] Arijit Khan, Yinghui Wu, and Xifeng Yan. Emerging graph queries in linked
data. In 2012 IEEE 28th International Conference on Data Engineering,
pages 1218–1221, 2012. (cited on Page 22 and 23)

[KYW10] Arijit Khan, Xifeng Yan, and Kun-Lung Wu. Towards proximity pattern
mining in large graphs. In Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of data, pages 867–878, 2010. (cited

on Page 23)

[LKF05] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time:
densification laws, shrinking diameters and possible explanations. In Pro-
ceedings of the eleventh ACM SIGKDD international conference on Knowl-
edge discovery in data mining, pages 177–187, 2005. (cited on Page 39)

Bibliography 99

[LLZW11] Jianxin Li, Chengfei Liu, Rui Zhou, and Wei Wang. Top-k keyword search
over probabilistic xml data. In Data Engineering (ICDE), 2011 IEEE 27th
International Conference on, pages 673–684, 2011. (cited on Page 23)

[LNHD11] Dijun Luo, Feiping Nie, Heng Huang, and Chris H Ding. Cauchy graph
embedding. In Proceedings of the 28th International Conference on Machine
Learning (ICML-11), pages 553–560, 2011. (cited on Page 31)

[LSDK18] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summa-
rization methods and applications: A survey. ACM Computing Surveys
(CSUR), page 62, 2018. (cited on Page 8, 15, 25, and 39)

[LSH+15] Gerd Lindner, Christian L Staudt, Michael Hamann, Henning Meyerhenke,
and Dorothea Wagner. Structure-preserving sparsification of social networks.
In Advances in Social Networks Analysis and Mining (ASONAM), 2015
IEEE/ACM International Conference on, pages 448–454, 2015. (cited on

Page v, 16, 25, 27, and 28)

[LY13] Shou-De Lin and Mi-Yen Yeh. Cheng-te li. 2013. sampling and summariza-
tion for social networks. In Proceedings of the 17th Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD’13), 2013. (cited on

Page 39)

[MBC+11] Michael Mathioudakis, Francesco Bonchi, Carlos Castillo, Aristides Gionis,
and Antti Ukkonen. Sparsification of influence networks. In Proceedings of
the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 529–537, 2011. (cited on Page 40)

[McG14] Andrew McGregor. Graph stream algorithms: a survey. ACM SIGMOD
Record, pages 9–20, 2014. (cited on Page 15 and 39)

[McG17] Andrew McGregor. Graph sketching and streaming: New approaches for
analyzing massive graphs. In International Computer Science Symposium
in Russia, pages 20–24, 2017. (cited on Page 15)

[MGF11] Koji Maruhashi, Fan Guo, and Christos Faloutsos. Multiaspectforensics:
Pattern mining on large-scale heterogeneous networks with tensor analysis.
In Advances in Social Networks Analysis and Mining (ASONAM), 2011
International Conference on, pages 203–210, 2011. (cited on Page 40)

[MP10] Hossein Maserrat and Jian Pei. Neighbor query friendly compression of
social networks. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 533–542, 2010.
(cited on Page 39)

[MTVV15] Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T Vu. Densest
subgraph in dynamic graph streams. In International Symposium on

100 Bibliography

Mathematical Foundations of Computer Science, pages 472–482, 2015.
(cited on Page 15)

[NG04] Mark EJ Newman and Michelle Girvan. Finding and evaluating community
structure in networks. Physical review E, page 026113, 2004. (cited on

Page 39)

[NHH+18] Andriy Nikolov, Peter Haase, Daniel M Herzig, Johannes Trame, and Artem
Kozlov. Combining rdf graph data and embedding models for an augmented
knowledge graph. In Companion of the The Web Conference 2018 on The
Web Conference 2018, pages 977–980, 2018. (cited on Page 40)

[OB14] Mark Ortmann and Ulrik Brandes. Triangle listing algorithms: Back from
the diversion. In Proceedings of the Meeting on Algorithm Engineering &
Expermiments, pages 1–8, 2014. (cited on Page 16 and 29)

[OCP+16] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asym-
metric transitivity preserving graph embedding. In Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 1105–1114, 2016. (cited on Page 17, 31, and 34)

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
701–710, 2014. (cited on Page 17, 32, and 40)

[QLZJ16] Qiang Qu, Siyuan Liu, Feida Zhu, and Christian S Jensen. Efficient online
summarization of large-scale dynamic networks. IEEE Transactions on
Knowledge and Data Engineering, pages 3231–3245, 2016. (cited on Page 15)

[RGSB17] Matteo Riondato, David Garćıa-Soriano, and Francesco Bonchi. Graph sum-
marization with quality guarantees. Data mining and knowledge discovery,
pages 314–349, 2017. (cited on Page 39)

[RJH] Ning Ruan, Ruoming Jin, and Yan Huang. Distance preserving graph
simplification. In Data Mining (ICDM), 2011 IEEE 11th International
Conference on, pages 1200–1205. (cited on Page 25)

[RS00] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction
by locally linear embedding. science, pages 2323–2326, 2000. (cited on

Page 17 and 38)

[RSF17] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo.
struc2vec: Learning node representations from structural identity. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 385–394, 2017. (cited on Page 17)

Bibliography 101

[RWE13] Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases. “ O’Reilly
Media, Inc.”, 2013. (cited on Page 14)

[SG18] Chunyao Song and Tingjian Ge. Labeled graph sketches. 2018. (cited on

Page 15)

[SJ09] Blake Shaw and Tony Jebara. Structure preserving embedding. In Proceed-
ings of the 26th Annual International Conference on Machine Learning,
pages 937–944, 2009. (cited on Page 32)

[SMS+17] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and
M Tamer Özsu. The ubiquity of large graphs and surprising challenges of
graph processing. Proceedings of the VLDB Endowment, pages 420–431,
2017. (cited on Page ix, 9, 10, and 14)

[SPR11] Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. Local graph
sparsification for scalable clustering. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, pages 721–732,
2011. (cited on Page 16, 26, and 30)

[SS11] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective
resistances. SIAM Journal on Computing, pages 1913–1926, 2011. (cited

on Page 40)

[SSM14] Christian Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit:
An interactive tool suite for high-performance network analysis. CoRR,
2014. (cited on Page 16, 25, 45, and 46)

[ST11] Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs.
SIAM Journal on Computing, pages 981–1025, 2011. (cited on Page 40)

[STWJ13] Maryam Shoaran, Alex Thomo, and Jens H Weber-Jahnke. Zero-knowledge
private graph summarization. In BigData Conference, pages 597–605, 2013.
(cited on Page 40)

[SWL+18] Qi Song, Yinghui Wu, Peng Lin, Luna Xin Dong, and Hui Sun. Mining
summaries for knowledge graph search. IEEE Transactions on Knowledge
and Data Engineering, pages 1887–1900, 2018. (cited on Page 40)

[TFGER07] Hanghang Tong, Christos Faloutsos, Brian Gallagher, and Tina Eliassi-Rad.
Fast best-effort pattern matching in large attributed graphs. In Proceedings
of the 13th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 737–746, 2007. (cited on Page 23)

[THP08] Yuanyuan Tian, Richard A Hankins, and Jignesh M Patel. Efficient aggre-
gation for graph summarization. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 567–580, 2008.
(cited on Page 40)

102 Bibliography

[TMKM18] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller.
Verse: Versatile graph embeddings from similarity measures. In Proceedings
of the 2018 World Wide Web Conference on World Wide Web, pages
539–548, 2018. (cited on Page 31)

[TQW+15] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu
Mei. Line: Large-scale information network embedding. In Proceedings of
the 24th International Conference on World Wide Web, pages 1067–1077,
2015. (cited on Page 17 and 40)

[WCW+17] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang
Yang. Community preserving network embedding. In AAAI, pages 203–209,
2017. (cited on Page 17)

[WCZ16] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embed-
ding. In Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1225–1234, 2016. (cited

on Page 18, 31, and 40)

[WGHB09] Pu Wang, Marta C González, César A Hidalgo, and Albert-László Barabási.
Understanding the spreading patterns of mobile phone viruses. Science,
pages 1071–1076, 2009. (cited on Page 20)

[WWL+18] Meng Wang, Ruijie Wang, Jun Liu, Yihe Chen, Lei Zhang, and Guilin
Qi. Towards empty answers in sparql: Approximating querying with rdf
embedding. In International Semantic Web Conference, pages 513–529,
2018. (cited on Page 40)

[YL13] Jaewon Yang and Jure Leskovec. Overlapping community detection at
scale: a nonnegative matrix factorization approach. In Proceedings of the
sixth ACM international conference on Web search and data mining, pages
587–596, 2013. (cited on Page 39)

[YPS+13] Jinguo You, Qiuping Pan, Wei Shi, Zhipeng Zhang, and Jianhua Hu.
Towards graph summary and aggregation: A survey. In Social Media
Retrieval and Mining, pages 3–12. 2013. (cited on Page 39)

[YXZ+07] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang Yang,
and Stephen Lin. Graph embedding and extensions: A general framework
for dimensionality reduction. IEEE transactions on pattern analysis and
machine intelligence, pages 40–51, 2007. (cited on Page 31)

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research aim
	1.2 Research methodology (CRISP-DM)
	1.3 Structure of the thesis

	2 Background
	2.1 Organization of the literature review
	2.1.1 Network science
	2.1.2 Graph databases
	2.1.3 Theoretical foundations of graph summarization
	2.1.4 Sparsification techniques
	2.1.5 Graph embeddings

	2.2 Literature review
	2.2.1 The business advantages brought forward by network science
	2.2.2 Graph processing
	2.2.2.1 Graph database storage
	2.2.2.2 Graph database querying

	2.2.3 Graph libraries
	2.2.4 Graph algorithms
	2.2.5 Summarization techniques for large graph data
	2.2.5.1 Sparsifiers
	2.2.5.2 Embeddings

	2.3 Related work in summarization of large graph data in data management

	3 Prototypical Implementation
	3.1 Research questions
	3.1.1 Sparsifiers
	3.1.2 Embeddings

	3.2 Implementation
	3.2.1 Sparsifiers
	3.2.1.1 Hardware and software configurations
	3.2.1.2 Dataset
	3.2.1.3 Libraries

	3.2.2 Embeddings
	3.2.2.1 Hardware and software configurations
	3.2.2.2 Dataset
	3.2.2.3 GEM python library
	3.2.2.4 Neo4j stored procedures

	4 Sparsifiers
	4.1 Research Questions
	4.2 Evaluation and discussion
	4.2.1 Sparsification times (SF1) and description of the summaries
	4.2.2 Queries over sparsified data (SF1): results
	4.2.3 Queries over sparsified data (SF1): execution times
	4.2.4 Sparsification times (SF10) and description of the summaries
	4.2.5 Queries over sparsified data (SF10): results

	5 Graph Embeddings
	5.1 Research questions
	5.2 Evaluation and Discussion
	5.2.1 Embedding times
	5.2.2 Queries over embedded data: execution times

	6 Conclusion and Future Work
	7 Appendix
	Bibliography

