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Motivation & Goal

Why incentive mechanisms (IMs) for VFL?
Clients may withdraw from the federation due to
the following challenges:

Privacy concerns

Spurious features

Resource constraints

Model 
Accuracy

Feature 
Selection

Privacy 
Preserving

Incentives

Why don’t the existing IM solutions for VFL work?
No IM for VFL has considered both privacy-preserving and feature
importance-based learning in their IM solutions.

Goal: Develop an attack-resistant, robust vertical federated learning via incentive
mechanisms that consider privacy-preserving and feature importance by achieving:

high prediction accuracy

a required level of privacy-preserving

high efficiency under resource-constrained clients
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Related Work

Privacy-Preserving Feature Selection (FS) in VFL

Additive secret-sharing for FS (Zhang et al., 2022)
Stochastic dual-gate for the probability of features (Li et al., 2023)
Communication-efficient FS in VFL (Castigia et al., 2023)
IM based on bankruptcy problem (Khan et al., 2023)

Incentive Mechanisms (IMs) in VFL

Feature importance-based IM (Tan et al., 2023)
Economic mechanism between clients (Yang et al., 2023)
Truthful IM (Lu et al., 2023)
Fairness-aware IM (Shi et al., 2022)
Reputation-based IM using Shapley value (Thi et al., 2021).

Limitations

Lack of studies considering both feature selection and
privacy-preserving for incentive mechanism.
Insufficient incentive mechanism research for VFL.
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Problem Statement & Contributions

We aim to develop a lightweight incentive mechanism that rewards clients

who contribute to increasing prediction accuracy based on important

features and preserving privacy. The reward function is given by:

Ti = w1 · I + w2 · P

where Ti is the reward for client i , I is the performance contribution and

P is the privacy contribution.

Key Contributions:

Develop a novel incentive mechanism (IM) for VFL that rewards

clients for improving prediction accuracy with key feature

contributions while upholding privacy.

Pinpoint features that markedly boost prediction accuracy.

Ensure the IM’s scalability, facilitating VFL efficiency despite tight

resource limitations.
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Background: Horizontal & Vertical Federated
Learning (FL)

FL facilitates training AI models across multiple parties with local data,

eliminating the need for data exchange.

FL Types:

Horizontal FL (HFL): Parties hold data samples from the same

sample space but different feature space.

Vertical FL (VFL): Parties hold data samples from the same feature

space but different sample space.

Source: Jiang et al., “Comprehensive analysis of privacy leakage in vertical federated learning during prediction.” Proceedings on
Privacy Enhancing Technologies (2022).
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System Model

Global Model

Client Model Client Model

features: c11, c12, c13
Client1

features: c31, c32, c33
Client3

Client Model

features: c21, c22
Client2

Download 
Gradients

Upload 
Embeddings

Download 
Gradients

Upload 
Embeddings

The VFL system includes several clients and a single central server.

Each client holds a unique subset of features, while the server has labels.

All clients operate under a semi-honest assumption.

The server is presumed to be entirely honest.

Clients typically represent organizations such as medical or educational
institutions.
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Proposed Framework

Global 
Model

Model 
A

Model 
B

Model 
C

Model 
D

FL Central Server
1. Receive local model 

updates
2. Aggregate the updates, 

calculate contributions
3. Add Gaussian noise 
4. Send updates back to   

local models 

Model A: Features 
- A, B                   
1. Receive global 
model updates  
2.Run a forward 
pass

Model B: Features 
- F, E                
1. Receive global 
model updates  
2.Run a forward 
pass

Model C: Features 
- H, D                
1. Receive global 
model updates  
2.Run a forward 
pass

Model D: Features 
- G, C                
1. Receive global 
model updates  
2.Run a forward 
pass

Organization A Organization B Organization C Organization 

FL Local Models
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Privacy-Preserving Mechanism: Differential Privacy

Overview:

Optimize Differential Privacy (DP) to preserve a required level of

privacy while meeting acceptable prediction accuracy of the FL model.

Guarantee that the analysis output remains largely unaffected by the

presence/absence of a single data entry.

Tuning key DP parameters, including ε (noise level) and sensitivity.

Proposed Approach:

The server adds Gaussian noise to the global model update at each

iteration.

The server adjusts noise level based on the privacy preference of

clients.
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Importance-based Feature Selection

Objectives:

Reduce overfitting by removing irrelevant or redundant features.

Improve model interpretability by focusing on influential features.

Feature Selection Techniques in ML:

Filter methods: Select features independently.

Wrapper methods: Use predictive model performance.

Embedded methods: Feature selection during model training.

Challenge: Clients do not have access to labels.

Proposed Approach:

Clients perform a PCA on its features.

They then pick the features that contribute most to the principle

components to participate in the federation.
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Proposed Incentive Mechanism

Profiler MO-RL
Scheduler

Token
Manager

Token bids

Pay Provider
Consumer

bids

Marginal Contributions
Coordinator

Organizations

Accuracy/loss
Latency

Privacy level

Selected
clients train

We adopt a token-based incentive mechanism in our approach.

Profiler module calculates contributions of each client.

Token manager handles distribution of tokens.

Clients are then selected based on their performance contributions.
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Proposed Incentive Mechanism (Cont.)

Objective: Ti = w1 · I + w2 · P
ClientCost = Unit − Cost ×Memory × CPU − Utilization

Reward calculation: for each client i ∈ [N], and round r ∈ [R]:

Cs ← sort(I(ci ,D),P(ci , l))

// sort by client contribution

β = Nr ×
(Nr + 1)

2

// token distribution normalization

τi = τi + Cs ×
τar
β
∗ Iutil

// reward distribution

τar = τar − τi

// token allocation

τi = τi +
τar
Nr

// redistribute remaining tokens

Cs : Rank of clients; Iutil : Utility improvement of the model accuracy;

β: Normalization term; τi : Tokens with client i ; τar : Remaining tokens;

Nr : Number of participants; I, P: Performance, privacy contribution.
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Experimental Setup: Datasets, Comparing Schemes,
& Network Structure

Datasets:

ADULT income prediction 1

AVAZU click fraud prediction 2

SOTA Comparing Schemes:

TEA for VFL (Lu et al., 2022)
FedSDG-FS: A feature selection-based VFL (Li et al., 2023).
A vanilla VFL model (Cebellos et al., 2020)
IM for VFL using attention aggregation (Yan et al., 2021).
feature selection using homomorphic encryption (Jiang et al., 2022).

Network Structure: A VFL model with two clients and a server

1https://www.cs.toronto.edu/ 2https://www.kaggle.com/
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Experimental Setup: Hyperparameters for Neural
Networks and Differential Privacy

Neural Networks (NNs) are constructed with

hidden layer size at each client: 128

hidden layer size at the server: 64

output dimension: 2

learning rate: 0.01

DP is parameterized with

ε: 0.8

δ: 1E-6

sensitivity: 1
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Preliminary Results: Impact of PCA Methods on
Client’s Data:

When subjected to Differential Privacy (DP), both datasets exhibit

identical trends.

Throughout the training rounds, the training loss consistently declines,

while the Area Under the Curve (AUC) metric remains stable.
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Preliminary Results: Accuracy without Differential
Privacy

Training loss shows similar decreasing trends with or without DP.

When running without DP, the average prediction accuracy is about

87.5%.
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Preliminary Results: Impact of DP

Impact of the parameter ε on model accuracy for ADULT dataset:

There is a steep increase in prediction accuracy for ε values close to 1.

Prediction accuracy steadily decreases with decrease in ε.
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Key Findings & Future Work

Key Findings:

PCA and DP do not work well together.

Adding small amounts of noise significantly reduces model accuracy

on our datasets.

We achieve good accuracies on both our datasets without DP in the

vanilla VFL setting.

Future Work:

Future improvements may involve implementing a more light-weight

DP approaches to enhance both model accuracy and training speed.

Furthermore, employing private collaborative feature selection could

contribute to enhancing model performance.
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Any Questions?

Thank you!

Contact Sindhuja Madabushi at
msindhuja@vt.edu
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