Sindhuja Madabushi (presenter), Haider Ali, Ahmad Khan, Mengmeng Gu, and Jin-Hee Cho

Department of Computer Science, Virginia Tech, Blacksburg VA

ACM CAPWIC 2024 6 April 2024

A + + = + + = +

Outline

- **Motivation & Goal**
- Related Work
- Problem Statement & Contributions
- Background: Horizontal vs. Vertical Federated Learning
- System Model
- Proposed Framework
	- **Privacy-Preserving Mechanism: Differential Privacy**
	- **Importance-based Feature Selection**
	- **Proposed Incentive Mechanism**
- Experimental Setup
- Preliminary Results
	- **Accuracy without Differential Privacy (DP)**
	- Impact of Differential Privacy
	- Comparison with Existing Schemes
- Key Findings & Future Work

 4 and 3 and 3 and 3 and 3 and 3

Motivation & Goal

Why incentive mechanisms (IMs) for VFL?

Clients may withdraw from the federation due to the following challenges:

- **Privacy concerns**
- **Spurious features**
- Resource constraints

母 > ィヨ > ィ

Motivation & Goal

Why incentive mechanisms (IMs) for VFL?

Clients may withdraw from the federation due to the following challenges:

- **Privacy concerns**
- **Spurious features**
- Resource constraints

Why don't the existing IM solutions for VFL work?

No IM for VFL has considered both privacy-preserving and feature importance-based learning in their IM solutions.

Motivation & Goal

Why incentive mechanisms (IMs) for VFL?

Clients may withdraw from the federation due to the following challenges:

- **Privacy concerns**
- **Spurious features**
- **Resource constraints**

Why don't the existing IM solutions for VFL work?

No IM for VFL has considered both privacy-preserving and feature importance-based learning in their IM solutions.

Goal: Develop an attack-resistant, robust vertical federated learning via incentive mechanisms that consider privacy-preserving and feature importance by achieving:

- high prediction accuracy
- a required level of privacy-preserving
- high efficiency under re[s](#page-3-0)ource-constrained clients

Related Work

Privacy-Preserving Feature Selection (FS) in VFL

- Additive secret-sharing for FS (Zhang et al., 2022)
- Stochastic dual-gate for the probability of features (Li et al., 2023)
- **Communication-efficient FS in VFL (Castigia et al., 2023)**
- **IM** based on bankruptcy problem (Khan et al., 2023)

■ Incentive Mechanisms (IMs) in VFL

- Feature importance-based IM (Tan et al., 2023)
- Economic mechanism between clients (Yang et al., 2023)
- Truthful IM (Lu et al., 2023)
- Fairness-aware IM (Shi et al., 2022)
- Reputation-based IM using Shapley value (Thi et al., 2021).

∢ ロ ▶ ∢ 御 ▶ ∢ 唐 ▶ ∢ 唐 ▶

Related Work

Privacy-Preserving Feature Selection (FS) in VFL

- Additive secret-sharing for FS (Zhang et al., 2022)
- Stochastic dual-gate for the probability of features (Li et al., 2023)
- **Communication-efficient FS in VFL (Castigia et al., 2023)**
- IM based on bankruptcy problem (Khan et al., 2023)

Incentive Mechanisms (IMs) in VFL

- Feature importance-based IM (Tan et al., 2023)
- Economic mechanism between clients (Yang et al., 2023)
- Truthful IM (Lu et al., 2023)
- Fairness-aware IM (Shi et al., 2022)
- Reputation-based IM using Shapley value (Thi et al., 2021).

Limitations

- **Lack of studies considering both feature selection and** privacy-preserving for incentive mechanism.
- **Insufficient incentive mechanism research for VFL.**

Problem Statement & Contributions

We aim to develop a lightweight incentive mechanism that rewards clients who contribute to increasing prediction accuracy based on important features and preserving privacy. The reward function is given by:

$$
\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}
$$

where \mathcal{T}_i is the reward for client i , \mathcal{I} is the performance contribution and P is the privacy contribution.

ADA 4 B 6 4 B 6

Problem Statement & Contributions

We aim to develop a lightweight incentive mechanism that rewards clients who contribute to increasing prediction accuracy based on important features and preserving privacy. The reward function is given by:

$$
\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}
$$

where \mathcal{T}_i is the reward for client i , \mathcal{I} is the performance contribution and P is the privacy contribution.

Key Contributions:

- Develop a novel incentive mechanism (IM) for VFL that rewards clients for improving prediction accuracy with key feature contributions while upholding privacy.
- **Pinpoint features that markedly boost prediction accuracy.**
- Ensure the IM's scalability, facilitating VFL efficiency despite tight resource limitations. $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$

Background: Horizontal & Vertical Federated Learning (FL)

FL facilitates training AI models across multiple parties with local data, eliminating the need for data exchange.

FL Types:

- **Horizontal FL (HFL)**: Parties hold data samples from the same sample space but different feature space.
- **J** Vertical FL (VFL): Parties hold data samples from the same feature space but different sample space.

Source: Jiang et al., "Comprehensive analysis of privacy leakage in vertical federated learning during prediction." Proceedings on Privacy Enhancing Technologies (2022). イロメ イ押メ イヨメ イヨ Ω

System Model

- The VFL system includes several clients and a single central server.
- Each client holds a unique subset of features, while the server has labels.
- All clients operate under a semi-honest assumption.
- The server is presumed to be entirely honest.
- Clients typically represent organizations such as medical or educational institutions. $4\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{4}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{2}$ $\overline{1}$ $\overline{2}$ $\overline{1}$ $\overline{2}$ $\overline{1}$

Proposed Framework

FL Local Models

÷,

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

Privacy-Preserving Mechanism: Differential Privacy

Overview:

- Optimize Differential Privacy (DP) to preserve a required level of privacy while meeting acceptable prediction accuracy of the FL model.
- Guarantee that the analysis output remains largely unaffected by the presence/absence of a single data entry.
- **T** Tuning key DP parameters, including ε (noise level) and sensitivity.

Proposed Approach:

- **The server adds Gaussian noise to the global model update at each** iteration.
- The server adjusts noise level based on the privacy preference of clients.

 4×10^{-1} \cdot 4×10^{-1} \cdot 4×10^{-1}

Importance-based Feature Selection

Objectives:

- Reduce overfitting by removing irrelevant or redundant features.
- **I** Improve model interpretability by focusing on influential features.

Importance-based Feature Selection

Objectives:

- Reduce overfitting by removing irrelevant or redundant features.
- **I** Improve model interpretability by focusing on influential features.

Feature Selection Techniques in ML:

- Filter methods: Select features independently.
- **Niapper methods: Use predictive model performance.**
- Embedded methods: Feature selection during model training.

Importance-based Feature Selection

Objectives:

- Reduce overfitting by removing irrelevant or redundant features.
- **IMPROVE MODEL INTERPRETED** interpretability by focusing on influential features.

Feature Selection Techniques in ML:

- Filter methods: Select features independently.
- **Niapper methods: Use predictive model performance.**
- **Embedded methods: Feature selection during model training.**

Challenge: Clients do not have access to labels.

Proposed Approach:

- Clients perform a PCA on its features.
- \blacksquare They then pick the features that contribute most to the principle components to participate in the federation.

 $A \oplus A$ and $A \oplus A$ and $A \oplus A$

Proposed Incentive Mechanism

- We adopt a token-based incentive mechanism in our approach.
- Profiler module calculates contributions of each client.
- Token manager handles distribution of tokens.
- Clients are then selected based on their performance contributions.

Objective: $\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}$

 $ClientCost = Unit - Cost \times Memory \times CPU - Utilization$

 \mathcal{A} \overline{A} \rightarrow \mathcal{A} \overline{B} \rightarrow \mathcal{A} \overline{B} \rightarrow \mathcal{A}

Objective: $\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}$

 $ClientCost = Unit - Cost \times Memory \times CPU - Utilization$

Reward calculation: for each client $i \in [N]$, and round $r \in [R]$:

$$
C_{s} \leftarrow sort(\mathcal{I}(c_{i}, \mathcal{D}), \mathcal{P}(c_{i}, I))
$$
\n
$$
\beta = N_{r} \times \frac{(N_{r} + 1)}{2}
$$
\n
$$
\tau_{i} = \tau_{i} + C_{s} \times \frac{\tau_{ar}}{\beta} * I_{util}
$$
\n
$$
\tau_{ar} = \tau_{ar} - \tau_{i}
$$
\n
$$
\tau_{i} = \tau_{i} + \frac{\tau_{ar}}{N_{r}}
$$

Objective: $\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}$

 $ClientCost = Unit - Cost \times Memory \times CPU - Utilization$

Reward calculation: for each client $i \in [N]$, and round $r \in [R]$:

 $\mathcal{C}_{\mathsf{s}} \leftarrow \mathsf{sort}(\mathcal{I}(\mathsf{c}_i, \mathcal{D}), \mathcal{P}(\mathsf{c}_i))$ $\frac{1}{2}$ sort by client contribution $\beta = N_r \times \frac{(N_r+1)}{2}$ 2 $\tau_i = \tau_i + \mathcal{C}_{\mathbf{s}} \times \frac{\tau_{\mathbf{a} \mathbf{r}}}{\beta}$ $\frac{dr}{\beta} * I_{util}$ $\tau_{ar} = \tau_{ar} - \tau_i$ $\tau_i = \tau_i + \frac{\tau_{ar}}{M}$ N_r

Objective: $\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}$

 $ClientCost = Unit - Cost \times Memory \times CPU - Utilization$

Reward calculation: for each client $i \in [N]$, and round $r \in [R]$:

 $\mathcal{C}_{\mathsf{s}} \leftarrow \mathsf{sort}(\mathcal{I}(\mathsf{c}_i, \mathcal{D}), \mathcal{P}(\mathsf{c}_i))$ $\frac{1}{2}$ sort by client contribution $\beta = N_r \times \frac{(N_r+1)}{2}$ 2 // token distribution normalization $\tau_i = \tau_i + \mathcal{C}_{\mathbf{s}} \times \frac{\tau_{\mathbf{a} \mathbf{r}}}{\beta}$ $\frac{dr}{\beta} * I_{util}$ $\tau_{2r} = \tau_{2r} - \tau_i$ $\tau_i = \tau_i + \frac{\tau_{ar}}{M}$ N_r

Objective: $\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}$

 $ClientCost = Unit - Cost \times Memory \times CPU - Utilization$

Reward calculation: for each client $i \in [N]$, and round $r \in [R]$:

$$
C_s \leftarrow sort(\mathcal{I}(c_i, \mathcal{D}), \mathcal{P}(c_i, I)) \qquad // \text{ sort by client contribution}
$$
\n
$$
\beta = N_r \times \frac{(N_r + 1)}{2} \qquad // \text{ token distribution normalization}
$$
\n
$$
\tau_i = \tau_i + C_s \times \frac{\tau_{ar}}{\beta} * I_{util} \qquad // \text{ reward distribution}
$$
\n
$$
\tau_{ar} = \tau_{ar} - \tau_i
$$
\n
$$
\tau_i = \tau_i + \frac{\tau_{ar}}{N_r}
$$

Objective: $\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}$

 $ClientCost = Unit - Cost \times Memory \times CPU - Utilization$

Reward calculation: for each client $i \in [N]$, and round $r \in [R]$:

 $\mathcal{C}_{\mathsf{s}} \leftarrow \mathsf{sort}(\mathcal{I}(\mathsf{c}_i, \mathcal{D}), \mathcal{P}(\mathsf{c}_i))$ $\beta = N_r \times \frac{(N_r+1)}{2}$ 2 $\tau_i = \tau_i + \mathcal{C}_{\mathbf{s}} \times \frac{\tau_{\mathbf{a} \mathbf{r}}}{\beta}$ β $\tau_{\text{ar}} = \tau_{\text{ar}} - \tau_i$ // token allocation $\tau_i = \tau_i + \frac{\tau_{ar}}{M}$ N_r

 $\frac{1}{2}$ sort by client contribution

// token distribution normalization

 $//$ reward distribution

Objective: $\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}$

 $ClientCost = Unit - Cost \times Memory \times CPU - Utilization$

Reward calculation: for each client $i \in [N]$, and round $r \in [R]$:

$$
C_{s} \leftarrow sort(\mathcal{I}(c_{i}, \mathcal{D}), \mathcal{P}(c_{i}, I))
$$
\n
$$
\beta = N_{r} \times \frac{(N_{r} + 1)}{2}
$$
\n
$$
\tau_{i} = \tau_{i} + C_{s} \times \frac{\tau_{ar}}{\beta} * I_{util}
$$
\n
$$
\tau_{ar} = \tau_{ar} - \tau_{i}
$$
\n
$$
\tau_{i} = \tau_{i} + \frac{\tau_{ar}}{N_{r}}
$$

 $\frac{1}{2}$ sort by client contribution

// token distribution normalization

 $\frac{1}{2}$ reward distribution

 $//$ token allocation

// redistribute remaining tokens

Experimental Setup: Datasets, Comparing Schemes, & Network Structure

Datasets:

- \blacksquare ADULT income prediction 1
- \blacksquare AVAZU click fraud prediction 2

■ SOTA Comparing Schemes:

- TEA for VFL (Lu et al., 2022)
- **FedSDG-FS:** A feature selection-based VFL (Li et al., 2023).
- A vanilla VFL model (Cebellos et al., 2020)
- **IM** for VFL using attention aggregation (Yan et al., 2021).
- **F** feature selection using homomorphic encryption (Jiang et al., 2022).

Network Structure: A VFL model with two clients and a server

 2 https:/[/w](#page-23-0)[ww](#page-25-0)[.k](#page-23-0)[ag](#page-24-0)[gl](#page-25-0)[e.c](#page-0-0)[om](#page-31-0)[/](#page-0-0) \geq

 1 https://www.cs.toronto.edu/ 2

Experimental Setup: Hyperparameters for Neural Networks and Differential Privacy

Neural Networks (NNs) are constructed with

- hidden layer size at each client: 128
- hidden layer size at the server: 64
- output dimension: 2
- **learning rate: 0.01**

DP is parameterized with

- $\blacksquare \varepsilon: 0.8$
- δ : 1E-6
- sensitivity: 1

Preliminary Results: Impact of PCA Methods on Client's Data:

- When subjected to Differential Privacy (DP), both datasets exhibit identical trends.
- **Throughout the training rounds, the training loss consistently declines,** while the Area Under the Curve (AUC) me[tric](#page-25-0) [re](#page-27-0)[m](#page-25-0)[a](#page-26-0)[in](#page-27-0)[s](#page-0-0) [sta](#page-31-0)[bl](#page-0-0)[e.](#page-31-0) മെ ര

Preliminary Results: Accuracy without Differential **Privacy**

Training loss shows similar decreasing trends with or without DP.

Number Nunning without DP, the average prediction accuracy is about 87.5%. Ω

Preliminary Results: Impact of DP

Impact of the parameter ε on model accuracy for ADULT dataset:

There is a steep increase in prediction accuracy for ε **values close to 1.**

Prediction accuracy steadily decreases with decrease in ε .

Key Findings & Future Work

Key Findings:

- **PCA and DP do not work well together.**
- Adding small amounts of noise significantly reduces model accuracy on our datasets.
- We achieve good accuracies on both our datasets without DP in the vanilla VFL setting.

Key Findings & Future Work

Key Findings:

- **PCA and DP do not work well together.**
- Adding small amounts of noise significantly reduces model accuracy on our datasets.
- We achieve good accuracies on both our datasets without DP in the vanilla VFL setting.

Future Work:

- **Future improvements may involve implementing a more light-weight** DP approaches to enhance both model accuracy and training speed.
- **Furthermore, employing private collaborative feature selection could** contribute to enhancing model performance.

 $\mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A}$

Any Questions?

Thank you!

Contact Sindhuja Madabushi at msindhuja@vt.edu

Madabushi et al. | VT | ACM CAPWIC 2024 6 April 2024 19 / 19

母 > ィヨ > ィ