Sindhuja Madabushi (presenter), Haider Ali, Ahmad Khan, Mengmeng Gu, and Jin-Hee Cho

Department of Computer Science, Virginia Tech, Blacksburg VA

ACM CAPWIC 2024 6 April 2024

Outline

- Motivation & Goal
- Related Work
- Problem Statement & Contributions
- Background: Horizontal vs. Vertical Federated Learning
- System Model
- Proposed Framework
 - Privacy-Preserving Mechanism: Differential Privacy
 - Importance-based Feature Selection
 - Proposed Incentive Mechanism
- Experimental Setup
- Preliminary Results
 - Accuracy without Differential Privacy (DP)
 - Impact of Differential Privacy
 - Comparison with Existing Schemes
- Key Findings & Future Work

(日) < (日) < (日) < (日) </p>

Motivation & Goal

Why incentive mechanisms (IMs) for VFL?

Clients may withdraw from the federation due to the following challenges:

- Privacy concerns
- Spurious features
- Resource constraints

(日) < (日) < (日) < (日) </p>

Motivation & Goal

Why incentive mechanisms (IMs) for VFL?

Clients may withdraw from the federation due to the following challenges:

- Privacy concerns
- Spurious features
- Resource constraints

伺下 イヨト イヨト

Why don't the existing IM solutions for VFL work?

No IM for VFL has considered both privacy-preserving and feature importance-based learning in their IM solutions.

Motivation & Goal

Why incentive mechanisms (IMs) for VFL?

Clients may withdraw from the federation due to the following challenges:

- Privacy concerns
- Spurious features
- Resource constraints

Why don't the existing IM solutions for VFL work?

No IM for VFL has considered both privacy-preserving and feature importance-based learning in their IM solutions.

Goal: Develop an attack-resistant, robust vertical federated learning via incentive mechanisms that consider privacy-preserving and feature importance by achieving:

- high prediction accuracy
- a required level of privacy-preserving

Related Work

Privacy-Preserving Feature Selection (FS) in VFL

- Additive secret-sharing for FS (Zhang et al., 2022)
- Stochastic dual-gate for the probability of features (Li et al., 2023)
- Communication-efficient FS in VFL (Castigia et al., 2023)
- IM based on bankruptcy problem (Khan et al., 2023)

Incentive Mechanisms (IMs) in VFL

- Feature importance-based IM (Tan et al., 2023)
- Economic mechanism between clients (Yang et al., 2023)
- Truthful IM (Lu et al., 2023)
- Fairness-aware IM (Shi et al., 2022)
- Reputation-based IM using Shapley value (Thi et al., 2021).

A (1) × (2) × (3) ×

Related Work

Privacy-Preserving Feature Selection (FS) in VFL

- Additive secret-sharing for FS (Zhang et al., 2022)
- Stochastic dual-gate for the probability of features (Li et al., 2023)
- Communication-efficient FS in VFL (Castigia et al., 2023)
- IM based on bankruptcy problem (Khan et al., 2023)

Incentive Mechanisms (IMs) in VFL

- Feature importance-based IM (Tan et al., 2023)
- Economic mechanism between clients (Yang et al., 2023)
- Truthful IM (Lu et al., 2023)
- Fairness-aware IM (Shi et al., 2022)
- Reputation-based IM using Shapley value (Thi et al., 2021).

Limitations

- Lack of studies considering *both* feature selection *and* privacy-preserving for incentive mechanism.
- Insufficient incentive mechanism research for VFL.

・ロト ・ 一 ・ ・ ヨ ・ ・ 日 ・

Problem Statement & Contributions

We aim to develop a lightweight incentive mechanism that rewards clients who contribute to increasing prediction accuracy based on important features and preserving privacy. The reward function is given by:

$$\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}$$

where T_i is the reward for client *i*, I is the performance contribution and P is the privacy contribution.

Problem Statement & Contributions

We aim to develop a lightweight incentive mechanism that rewards clients who contribute to increasing prediction accuracy based on important features and preserving privacy. The reward function is given by:

$$\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}$$

where T_i is the reward for client *i*, I is the performance contribution and P is the privacy contribution.

Key Contributions:

- Develop a novel incentive mechanism (IM) for VFL that rewards clients for improving prediction accuracy with key feature contributions while upholding privacy.
- Pinpoint features that markedly boost prediction accuracy.
- Ensure the IM's scalability, facilitating VFL efficiency despite tight resource limitations.

Background: Horizontal & Vertical Federated Learning (FL)

FL facilitates training AI models across multiple parties with local data, eliminating the need for data exchange.

FL Types:

- Horizontal FL (HFL): Parties hold data samples from the same sample space but different feature space.
- Vertical FL (VFL): Parties hold data samples from the same feature space but different sample space.

Source: Jiang et al., "Comprehensive analysis of privacy leakage in vertical federated learning during prediction." Proceedings on Privacy Enhancing Technologies (2022).

System Model

- The VFL system includes several clients and a single central server.
- Each client holds a unique subset of features, while the server has labels.
- All clients operate under a semi-honest assumption.
- The server is presumed to be entirely honest.
- Clients typically represent organizations such as medical or educational institutions.

Proposed Framework

FL Local Models

э

・ロト ・四ト ・ヨト ・ヨト

Privacy-Preserving Mechanism: Differential Privacy

Overview:

- Optimize Differential Privacy (DP) to preserve a required level of privacy while meeting acceptable prediction accuracy of the FL model.
- Guarantee that the analysis output remains largely unaffected by the presence/absence of a single data entry.
- Tuning key DP parameters, including ε (noise level) and sensitivity.

Proposed Approach:

- The server adds Gaussian noise to the global model update at each iteration.
- The server adjusts noise level based on the privacy preference of clients.

Importance-based Feature Selection

Objectives:

- Reduce overfitting by removing irrelevant or redundant features.
- Improve model interpretability by focusing on influential features.

Importance-based Feature Selection

Objectives:

- Reduce overfitting by removing irrelevant or redundant features.
- Improve model interpretability by focusing on influential features.

Feature Selection Techniques in ML:

- Filter methods: Select features independently.
- Wrapper methods: Use predictive model performance.
- Embedded methods: Feature selection during model training.

Importance-based Feature Selection

Objectives:

- Reduce overfitting by removing irrelevant or redundant features.
- Improve model interpretability by focusing on influential features.

Feature Selection Techniques in ML:

- Filter methods: Select features independently.
- Wrapper methods: Use predictive model performance.
- Embedded methods: Feature selection during model training.

Challenge: Clients do not have access to labels.

Proposed Approach:

- Clients perform a PCA on its features.
- They then pick the features that contribute most to the principle components to participate in the federation.

・ 一下・ ・ ヨト・ ・ ヨト

Proposed Incentive Mechanism

- We adopt a token-based incentive mechanism in our approach.
- Profiler module calculates contributions of each client.
- Token manager handles distribution of tokens.
- Clients are then selected based on their performance contributions.

Objective: $\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}$

 $ClientCost = Unit - Cost \times Memory \times CPU - Utilization$

Objective: $T_i = w_1 \cdot I + w_2 \cdot P$

 $\textit{ClientCost} = \textit{Unit} - \textit{Cost} \times \textit{Memory} \times \textit{CPU} - \textit{Utilization}$

Reward calculation: for each client $i \in [N]$, and round $r \in [R]$:

$$C_{s} \leftarrow sort(\mathcal{I}(c_{i}, \mathcal{D}), \mathcal{P}(c_{i}, l))$$
$$\beta = N_{r} \times \frac{(N_{r} + 1)}{2}$$
$$\tau_{i} = \tau_{i} + C_{s} \times \frac{\tau_{ar}}{\beta} * I_{util}$$
$$\tau_{ar} = \tau_{ar} - \tau_{i}$$
$$\tau_{i} = \tau_{i} + \frac{\tau_{ar}}{N_{r}}$$

Objective: $\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}$

 $\textit{ClientCost} = \textit{Unit} - \textit{Cost} \times \textit{Memory} \times \textit{CPU} - \textit{Utilization}$

Reward calculation: for each client $i \in [N]$, and round $r \in [R]$:

 $C_{s} \leftarrow sort(\mathcal{I}(c_{i}, \mathcal{D}), \mathcal{P}(c_{i}, l)) // \text{ sort by client contribution}$ $\beta = N_{r} \times \frac{(N_{r} + 1)}{2}$ $\tau_{i} = \tau_{i} + C_{s} \times \frac{\tau_{ar}}{\beta} * I_{util}$ $\tau_{ar} = \tau_{ar} - \tau_{i}$ $\tau_{i} = \tau_{i} + \frac{\tau_{ar}}{N_{r}}$

Objective: $\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}$

 $\textit{ClientCost} = \textit{Unit} - \textit{Cost} \times \textit{Memory} \times \textit{CPU} - \textit{Utilization}$

Reward calculation: for each client $i \in [N]$, and round $r \in [R]$:

 $C_{s} \leftarrow sort(\mathcal{I}(c_{i}, \mathcal{D}), \mathcal{P}(c_{i}, l)) // \text{ sort by client contribution}$ $\beta = N_{r} \times \frac{(N_{r} + 1)}{2} // \text{ token distribution normalization}$ $\tau_{i} = \tau_{i} + C_{s} \times \frac{\tau_{ar}}{\beta} * I_{util}$ $\tau_{ar} = \tau_{ar} - \tau_{i}$ $\tau_{i} = \tau_{i} + \frac{\tau_{ar}}{N_{r}}$

Objective: $\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}$

 $\textit{ClientCost} = \textit{Unit} - \textit{Cost} \times \textit{Memory} \times \textit{CPU} - \textit{Utilization}$

Reward calculation: for each client $i \in [N]$, and round $r \in [R]$:

Objective: $\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}$

 $ClientCost = Unit - Cost \times Memory \times CPU - Utilization$

Reward calculation: for each client $i \in [N]$, and round $r \in [R]$:

 $C_{s} \leftarrow sort(\mathcal{I}(c_{i}, \mathcal{D}), \mathcal{P}(c_{i}, l)) / \beta$ $\beta = N_{r} \times \frac{(N_{r} + 1)}{2} / \beta$ $\tau_{i} = \tau_{i} + C_{s} \times \frac{\tau_{ar}}{\beta} * I_{util} / \beta$ $\tau_{ar} = \tau_{ar} - \tau_{i} / \beta$ $\tau_{i} = \tau_{i} + \frac{\tau_{ar}}{N_{s}}$

// sort by client contribution

// token distribution normalization

// reward distribution

// token allocation

Objective: $\mathcal{T}_i = w_1 \cdot \mathcal{I} + w_2 \cdot \mathcal{P}$

 $ClientCost = Unit - Cost \times Memory \times CPU - Utilization$

Reward calculation: for each client $i \in [N]$, and round $r \in [R]$:

$$C_{s} \leftarrow sort(\mathcal{I}(c_{i}, \mathcal{D}), \mathcal{P}(c_{i}, l))$$
$$\beta = N_{r} \times \frac{(N_{r} + 1)}{2}$$
$$\tau_{i} = \tau_{i} + C_{s} \times \frac{\tau_{ar}}{\beta} * I_{util}$$
$$\tau_{ar} = \tau_{ar} - \tau_{i}$$
$$\tau_{i} = \tau_{i} + \frac{\tau_{ar}}{N_{r}}$$

// sort by client contribution

// token distribution normalization

// reward distribution

// token allocation

// redistribute remaining tokens

Experimental Setup: Datasets, Comparing Schemes, & Network Structure

Datasets:

- ADULT income prediction ¹
- AVAZU click fraud prediction ²

SOTA Comparing Schemes:

- TEA for VFL (Lu et al., 2022)
- FedSDG-FS: A feature selection-based VFL (Li et al., 2023).
- A vanilla VFL model (Cebellos et al., 2020)
- IM for VFL using attention aggregation (Yan et al., 2021).
- feature selection using homomorphic encryption (Jiang et al., 2022).

Network Structure: A VFL model with two clients and a server

²https://www.kaggle.com/ = > =

¹https://www.cs.toronto.edu/

Experimental Setup: Hyperparameters for Neural Networks and Differential Privacy

Neural Networks (NNs) are constructed with

- hidden layer size at each client: 128
- hidden layer size at the server: 64
- output dimension: 2
- learning rate: 0.01

DP is parameterized with

- ε: 0.8
- δ: 1E-6
- sensitivity: 1

Preliminary Results: Impact of PCA Methods on Client's Data:

- When subjected to Differential Privacy (DP), both datasets exhibit identical trends.
- Throughout the training rounds, the training loss consistently declines, while the Area Under the Curve (AUC) metric remains stable.

Preliminary Results: Accuracy without Differential Privacy

Training loss shows similar decreasing trends with or without DP.

When running without DP, the average prediction accuracy is about 87.5%.

Preliminary Results: Impact of DP

Impact of the parameter ε on model accuracy for ADULT dataset:

There is a steep increase in prediction accuracy for ε values close to 1.

Prediction accuracy steadily decreases with decrease in ε .

Key Findings & Future Work

Key Findings:

- PCA and DP do not work well together.
- Adding small amounts of noise significantly reduces model accuracy on our datasets.
- We achieve good accuracies on both our datasets without DP in the vanilla VFL setting.

Key Findings & Future Work

Key Findings:

- PCA and DP do not work well together.
- Adding small amounts of noise significantly reduces model accuracy on our datasets.
- We achieve good accuracies on both our datasets without DP in the vanilla VFL setting.

Future Work:

- Future improvements may involve implementing a more light-weight DP approaches to enhance both model accuracy and training speed.
- Furthermore, employing private collaborative feature selection could contribute to enhancing model performance.

A (10) A (10)

Any Questions?

Thank you!

Contact Sindhuja Madabushi at msindhuja@vt.edu

A (10) < A (10) < A (10)</p>