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1. Motivation
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Networks are everywhere

Motivation

• In our digital world, very large interconnected data is generated rapidly every second

○ Network analysis (for pathfinding, and other tasks) is important
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https://neo4j.com/docs/graph-algorithms/3.5/

○ Efficient tools are required to store and analyze this data

■ Specialized graph systems (databases, libraries)                                                         

help by providing join-free, index-free adjacency.

○ Declarative query languages (like Cypher)                                                              

nowadays provide an SQL-like interface for                                                               

optimizations to be done without involving users
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Large scale graph analytics

Scalability and visualization are the most imperative challenges faced by researchers 
and practitioners while dealing with large graph data1.

1Sahu, Siddhartha, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer Özsu. "The ubiquity of large graphs and surprising challenges of graph processing." Proceedings of the 
VLDB Endowment 11, no. 4 (2017): 420-431.
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Approximations might improve scalability 
and visualization...

6

For other kinds of data, Approximate Query Processing is studied to improve 
response time with large data.
• Samples
• Summaries
• Special structures: Bloom filters
Let users decide on speed/accuracy tradeoff1

1Ramnarayan, Jags, Barzan Mozafari, Sumedh Wale, Sudhir Menon, Neeraj Kumar, Hemant Bhanawat, Soubhik Chakraborty, Yogesh Mahajan, Rishitesh Mishra, and Kishor Bachhav. 
"Snappydata: A hybrid transactional analytical store built on spark." In Proceedings of the 2016 International Conference on Management of Data, pp. 2153-2156. ACM, 2016.
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But, how can graph approximation 
techniques be used?
 

How much do these techniques 
improve graph processing?
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Graph Spanners

Preserving paths

Graph Sparsification

Preserving structural features

Graph Embedding

Domain change, with other 
views on data
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How much do these techniques 
improve graph processing?

8

Graph Sparsification

Graph Embedding

Original Graph

Structural 
Queries

Structural 
Node 
Similarity 
Queries

Performance/ 
Accuracy 
comparison, 
Scalability

Overhead of 
summarization 
process?

Query over raw data
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2. Research Questions
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Sparsification

1. How does time required to sparsify graph data change with each 
sparsification technique?

2. How does the number of connected components and community count get 
affected if the graph data is sparsified using different techniques?

3. How does query execution time change when different queries are run on 
data sparsified using different techniques?

4. Are these techniques scalable, that is, do the above findings change for data 
with higher scale factors?

10
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Embeddings

4.  How does the embedding time change for different types of                                
embeddings?

5. How does time taken for calculating pair-wise cosine similarity change for both 
embedded and non embedded data in the graph database, compared to calculating 
it manually?
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3. Background
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Summarization of large graph data

• Grouping/aggregation based summaries

• Simplification based summaries (spanners, sparsification)

• Bit-compression based summaries

• Domain specific summaries

• Latent representations (graph embeddings)

Liu, Yike, Tara Safavi, Abhilash Dighe, and Danai Koutra. "Graph Summarization Methods and Applications: A Survey." ACM Computing Surveys (CSUR) 51, no. 3 (2018): 62.
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Summarization techniques for graphs

• Benefits:

• Reduced memory footprint

• Speed-up of graph algorithms and queries

• Easy to visualize avoiding the “hairball” visualization problem for graphs 

• Noise elimination 

14

Hairballs
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Summarization techniques for graphs
• Challenges:

• Complexity of data

• Some summarization techniques are not scalable

• Usefulness of summaries depends on workloads 

• Accuracy and error bounds are required for query processing over summaries 

• Updates on the origuinal data might require inefficient recomputation of summaries

15
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Summarization of large graph data

• Grouping/aggregation based summaries

• Simplification based summaries (spanners, sparsification)

• Bit-compression based summaries

• Domain specific summaries

• Latent representations (graph embeddings)

Liu, Yike, Tara Safavi, Abhilash Dighe, and Danai Koutra. "Graph Summarization Methods and Applications: A Survey." ACM Computing Surveys (CSUR) 51, no. 3 (2018): 62.
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We have selected these two families for our study due to the recent 
availability of open source standard implementations.
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Simplification based summaries

• Aim at lessening the number of edges in a graph using a specific metric

• Size of network is reduced

• Structural and statistical properties are preserved

• Different types include: Sparsification, Spanners, Sketches, Graph sampling

17
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Sampling strategies are the core of sparsification

Satuluri, Venu, Srinivasan Parthasarathy, and Yiye Ruan. "Local graph sparsification for scalable clustering." In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, pp. 721-732. ACM, 2011.
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Satuluri, Venu, Srinivasan Parthasarathy, and Yiye Ruan. "Local graph sparsification for scalable clustering." In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, pp. 721-732. ACM, 2011.
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Types of sparsification
• Random edge

• Algebraic distance

• Local degree

• Local similarity

• Triangle

Due to time constraints we only introduce 3.

Lindner, Gerd, Christian L. Staudt, Michael Hamann, Henning Meyerhenke, and Dorothea Wagner. "Structure-preserving sparsification of social networks." In Advances in Social Networks 
Analysis and Mining (ASONAM), 2015 IEEE/ACM International Conference on, pp. 448-454. IEEE, 2015.
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Random edge sparsification
• Selects edges uniformly at random until a sparsification ratio is 

achieved

Lindner, Gerd, Christian L. Staudt, Michael Hamann, Henning Meyerhenke, and Dorothea Wagner. "Structure-preserving sparsification of social networks." In Advances in Social 
Networks Analysis and Mining (ASONAM), 2015 IEEE/ACM International Conference on, pp. 448-454. IEEE, 2015.
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Local degree sparsification
• Based on the concept of “hub nodes”

• Edges to top ⎣d(u)α⎦nodes are kept for each node where d(u) is the 
degree of node u and α ϵ [0, 1] arranged in descending order

this prunes the local, keeps the global
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Example

• For node A: d(C) = 3, d(B) = 2, d(D) = 2, 
d(E)=1, for convenience, let α=1.

• If we stand in A and set our threshold to be 
3, only to the edge to C is preserved. 

○ C here is the neighboring node with the 
highest degree.

○ Hence, through this sparsification 
technique, neighboring nodes with 
highest degrees are preserved.

Lindner, Gerd, Christian L. Staudt, Michael Hamann, Henning Meyerhenke, and Dorothea Wagner. "Structure-preserving sparsification of social networks." In Advances in Social Networks 
Analysis and Mining (ASONAM), 2015 IEEE/ACM International Conference on, pp. 448-454. IEEE, 2015.
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Drawing of the Jazz musicians collaboration network and the Local 
Degree sparsified version containing 15% of edges.
Local is pruned, global is kept

Lindner, Gerd, Christian L. Staudt, Michael Hamann, Henning Meyerhenke, and Dorothea Wagner. "Structure-preserving sparsification of social networks." In Advances in Social Networks 
Analysis and Mining (ASONAM), 2015 IEEE/ACM International Conference on, pp. 448-454. IEEE, 2015.
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Algebraic distance sparsification

• It aims to achieve a balance between local and global structure 
preservation

• It ranks edges based on algebraic distances, and filters them on a 
parametric threshold.

• The process begins by initializing each node with a vector.

Lindner, Gerd, Christian L. Staudt, Michael Hamann, Henning Meyerhenke, and Dorothea Wagner. "Structure-preserving sparsification of social networks." In Advances in Social Networks 
Analysis and Mining (ASONAM), 2015 IEEE/ACM International Conference on, pp. 448-454. IEEE, 2015.

John, Emmanuel, and Ilya Safro. "Single-and multi-level network sparsification by algebraic distance." Journal of Complex Networks 5, no. 3 (2016): 352-388.
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Algebraic distance

• Vectors are updated in a given number of iterations using a weighted adjacency 
matrix. At each position they average the corresponding value of the vectors of 
the adjacent edges.

• This is called a Jacobian overrelaxation process.

• After repeated iterations the values of neighboring vectors converge with each 
other and updates become small.

• Algebraic distances are calculated for the final values obtained for each vector 
after a set of given iterations.

sij
(k) = | xi

(k) - xj
(k) |

Chen, Jie, and Ilya Safro. "Algebraic distance on graphs." SIAM Journal on Scientific Computing 33, no. 6 (2011): 3468-3490.
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Graph Embeddings
• A technique to represent nodes of a graph as vectors in an      

Euclidian vector space

• Structure and other inherent properties of the graph are preserved

• Most notably: node structural similarity

• Graph is accessible to vector-based machine learning methods

26

Graph embedding of Zakary Karate graph
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Embedding/Latent representation 
Techniques

• Matrix factorization methods

• Random walk methods

• Deep learning methods

Goyal, Palash, and Emilio Ferrara. "Graph embedding techniques, applications, and performance: A survey." Knowledge-Based Systems 151 (2018): 78-94.
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Types of embeddings in our study 

• Laplacian eigenmaps

• Locally linear embedding

• Higher order proximity preserving graph embedding (HOPE)

• Node2Vec

28
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Node2vec

• A way of representing nodes of a graph as vectors in vector spaces

• Uses a skip gram model used by Word2Vec to obtain embeddings

• To obtain training data, node2vec uses biased random walk.

Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, 
pp. 855-864. ACM, 2016.
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An insight into Word2Vec

30

https://www.knime.com/blog/word-embedding-word2vec-explained
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Architecture of neural network for word2vec
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https://www.knime.com/blog/word-embedding-word2vec-explained

A neural network is 
trained, taking as 
input each 
one-hot-encoded 
word, and as 
expected output, the 
probability of words 
co-occurring in the 
training data. 

The NN creates 
weights that minimize 
the loss between the 
learned prediction and 
the given probabilities.
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Second order random walks for training data

• Consider a random walk that just traverse 
edge (t, v) and now resides at node v.

• The walk now needs to decide on the next 
step so it evaluates the transition probabilities 
πvx on edges (v, x) leading from v

•  unnormalized transition probability  is given 
by:

πvx = αpq(t, x) · wvx 

Where, 

Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, 
pp. 855-864. ACM, 2016.
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Second order random walks
Intuitively,

• Parameter p controls the likelihood of 
immediately revisiting a node in the walk

• If parameter q is relatively low, walk is more 
inclined to visit nodes which are further away 
from the node t 

• If q is relatively high, the random walk is 
biased towards nodes close to node t

• With this approach the training data is 
collected, and then it is embedded similarly to 
Word2Vec.

Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, 
pp. 855-864. ACM, 2016.
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4. Implementation
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Graph Sparsification

Graph Embedding

Original Graph

Structural 
Queries

Structural 
Node 
Similarity 
Queries

Query over raw data

Queries with 
stored 
procedures
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Dataset - LDBC SNB data schema

36

SF 1: 9892 nodes, 180623 edges
(Person-knows-Person)
SF 10: 65645 nodes, 1947294 edges 
(Person-knows-Person)

SF 1 (subset): 
500 person, 2197 tags, 10157 edges
(Person-hasInterest-Tag)
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5. Results and Discussion
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Results and discussion
Sparsification 

technique # of edges # of nodes sparsification ratio

Baseline 180623 9893

Algebraic distance 178277 9893 0.98

Local degree 43255 9893 0.23

Local similarity 35022 9893 0.19

Triangle 170049 9893 0.94

Random edge 90541 9893 0.5

Sparsification 
technique # of edges # of nodes sparsification ratio

Baseline 1947294 65645

Algebraic distance 1928513 65645 0.99

Local degree 376240 65645 0.19

Local similarity 308113 65645 0.15

Triangle 1800432 65645 0.92

Random edge 973645 65645 0.49

Sparsification ratios 
for various 
sparsification 
techniques on LDBC 
SF1 data

Sparsification ratios 
for various 
sparsification 
techniques on LDBC 
SF10 data

38
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Sparsification times SF1, SF10

Sparsification times SF1

Sparsification times 
SF10

39

AD is the most time 
consuming, as expected.

RE is outperformed, 
surprisingly.
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Accuracy: Average betweenness centrality 

Average betweenness 
centrality 
of SF1 data

Average betweenness 
centrality 
of SF10 data

40

Local methods perform worst, 
AD performs best.
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Average pagerank

Average pagerank for SF1 data

Average pagerank for SF10 data

41

Local methods perform worst, 
AD performs best.
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Average community count

Average community counts for SF1 data

Average community counts for SF10 data

42

Local similarity performs worst, 
AD performs best, LD is 
competitive.

Connected components and 
partition sizes are preserved 
for all except RE and TS
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Execution times of queries SF1

All methods improve betweenness 
centrality

AD, TS deteriorate execution time 
of community detection

Benefits only for
connected components using LS 
(with RE results are not accurate)

RE provides reasonable runtime for 
page rank.

43
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Execution times of SF10 

44

Speed ups for page rank query on 
local sparsified versions

Connected components works 
better for all techniques than 
baseline.

Notable speed ups for 
betweenness centrality on all 
types of sparsification

Community detection: All methods 
bring some small improvements. 
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Embeddings

LAP takes the least 
time, N2V provides 
more informative 

results

45
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1. The average time taken to calculate pairwise 
cosine similarities using self written python (on 
default config: 5349 ms) code is significantly 
less when compared to the time taken to 
calculate the same via stored procedure 
(14455 ms).

2. Time taken to calculate pairwise similarities on    
unembedded data (32985.6 ms) is nearly 6 times 
higher compared to average execution using self 
written python code on the respective embeddings 
of nodes.

46
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6. Conclusion and Future Work
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The most important takeaways that everyone should 
remember:

• Summary creation:
○ AD takes more sparsification time than others.
○ The runtime of sparsifications is not excessive (none takes more than a few 

minutes)
○ The embedding process with GEM is not scalable at the moment.

■ Embedding procedures are currently too slow.

Conclusions

48
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The most important takeaways that everyone should 
remember:

• Accuracy:
○ Most methods preserve number of connected components.
○ Only algebraic distance sparsification preserves the community count. 
○ For ranking and centrality more evaluations are needed. 
○ All methods are expected to scale well in accuracy as data grows.

■ But we do not report evaluations on this.

○ In visualization, all methods, except local degree and local similarity, seem 
to preserve structure of graph. More studies needed.

○ Node2Vec embeddings seem to give better similarities than over 
un-embedded data. More studies needed.

Conclusions

49
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The most important takeaways that everyone should 
remember:
• Execution times:

○ Notable speedups for betweenness centrality for all the sparsifications. 
○ Local similarity shows good speed ups for connected components, page 

rank, and partition size.

○ As data grows, querying over the sparsified data is comparatively 
better than the baseline.

○ For embeddings: The average time taken to calculate pairwise cosine 
similarities is significantly less when compared to the time taken to 
calculate via stored procedures or unembedded data
■ Better algorithms are required in Neo4j to support the top pair-wise 

cosine similarity
• The embedding process with GEM is not scalable at the moment.
• AD takes more sparsification time than others.

Conclusions

50
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Future Work
• Trade-off analysis between memory footprint, summary creation time, 

accuracy and query execution time is needed. 

• Algorithms to deal with properties could be a valuable contribution

• Graph stream embedding (with change awareness) could be a high 
impacting area to explore

• Diverse edge types for summarization is also an unexplored area of research

51

• Integration of summarization into graph databases: caching with sparsification, 
others.

• Analysis to provide error and operation time bounds could be productive.
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Thank you
Questions, thoughts?
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Extra Slides
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Datasets used for each 
technique:Sparsificatio

n
• LDBC SNB Social network dataset

• person, person-knows-person

• undirected graph 

• SF1 and SF10

Embedding
s

• LDBC SNB Social network dataset

• person, person-has-interest, tag

• directed graph 

• SF0.05 with 500 persons
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Local similarity sparsification

•This sparsification technique is based on Jaccard similarity measure over 
the set of nodes in a given graph.

•It is given by:

Sim (A, B) = |A∩B| / |A∪B|

Where A and B are two sets

This strategy keeps the local but not the global

Satuluri, Venu, Srinivasan Parthasarathy, and Yiye Ruan. "Local graph sparsification for scalable clustering." In Proceedings of the 2011 ACM SIGMOD International Conference on 
Management of data, pp. 721-732. ACM, 2011.
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Triangle count sparsification

• Edges are removed based on the number of triangles they are 
present in.

• Keeps local, loses global structures.

Chiba, Norishige, and Takao Nishizeki. "Arboricity and subgraph listing algorithms." SIAM Journal on Computing 14, no. 1 (1985): 210-223.
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Research aim

• Evaluate two structure preserving summarization techniques 
namely scarification and graph embeddings on static graphs 
of different scale factors

• Attempt to quantify scalability of the techniques for improving 
graph tasks like community detection, page rank, 
betweenness centrality, connected components and pairwise 
cosine similarity

58
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Prototypical 
implementation

Sparsificatio
n

• Networkit python library 

• facilitates the implementation of different sparsification techniques

• Use cypher queries for community detection, connected 
components, page rank, partition size and betweenness centrality on 
both sparsified and unsparsified data on Neo4j database

• visualize the sparsified data 

59
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Prototypical 
implementation

Embeddings

• GEM python library 

• facilitates implementation of various embedding techniques

• Derive 2-d embeddings from all embedding techniques

• calculate pairwise cosine similarity manually

• calculate pairwise cosine similarity in neo4j using stored procedures 
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